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COMPOSITION OF POLYNOMIALS OVER A FIELD

EunMi Choi*

Abstract. This work studies about the composition polynomial
f(g(x)) that preserves certain properties of f(x) and g(x). We shall
investigate necessary and sufficient conditions of f(x) and g(x) to
be f(g(x)) is separable, solvable by radical or split completely. And
we find relationship of Galois groups of f(g(x)), f(x) and of g(x).

1. Introduction

Let K be a field and let f(x) and g(x) be polynomials in K[x]. We
denote the composite of f(x) and g(x) by f(g(x)), and define the iter-
ates of f(x) by f1(x) = f(x), f2(x) = f(f1(x)) (the 2nd iterate) and
fr+1(x) = f(fr(x)) (the rth iterate) for all r ≥ 1.

During last some decades many researcher have asked an interesting
question that what properties of f(x) are preserved in the composition
fr(x) of f(x). There are some examples in [2], [5] and [6]. For instance,
f(x) = x2 + 10x + 17 ∈ Z[x] is irreducible but the 2nd iterate f2(x) =
(x2 + 12x + 34)(x2 + 8x + 14) is reducible. For the separability, g(x) =
x2 − 1 is separable and split completely in Q[x], but g2(x) = x2(x2 − 2)
is inseparable and does not split completely in Q. Moreover for the
solvability, h(x) = x5 − 5x + 12 is solvable by radical over Q but h2(x)
is not solvable by radical. However there are also examples such as
f(x) = x2 − x + 1 ∈ Z[x], that not only f(x) but all nth iterates fn(x)
are irreducible ([5]).

Furthermore it was proved in [2] that there exist a polynomial f(x) ∈
K[x] such that the first r iterations of f(x) posses certain property,
such as irreducibility, separability, splitting completely, and solvability
by radicals, but the next iterate does not hold. From that point, another
natural question was raised that over which fields K can such examples
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exist? In [2], K was assumed as a Hilbertian field, and it was proved
that there always exist irreducible polynomials f(x) and g(x) ∈ K[x]
such that both f(x) and g(x) are solvable by radical over K and f(g(x))
is irreducible in K[x] however f(g(x)) is not solvable by radical over K.

In this paper, we study composition polynomials f(g(x)) that pre-
serve certain properties of f(x) and g(x). We shall investigate necessary
and sufficient conditions of f(x) and g(x) to be f(g(x)) is separable,
solvable by radical or splits completely. And we find relationships be-
tween Galois groups of f(g(x)), f(x) and of g(x).

2. Separability and solvability of composition

A well known property about the composition f(g(x)) of f(x) and
g(x) due to Capelli is as follows.

Lemma 2.1. [6] Let f(x) and g(x) be in K[x].
(1) Let β be a root of f(x). Then every root of g(x) − β is a root of

f(g(x)). And if α is a root of f(g(x)) then g(α) is a root of f(x).
(2) The splitting field of f(x) over K is contained in the splitting field

of f(g(x)) over K.

In fact, if β is a root of f(x) and θ is a root of g(x)−β then f(g(θ)) =
f(β) = 0. If α1, α2, · · · , αl (l > 0) are roots of f(g(x)) in some splitting
field over K then g(αi) gives all the zeros of f(x) thus the splitting field
of f is contained in the splitting field of f(g(x)).

Lemma 2.2. [2] (Capelli’s Lemma) Let f(x), g(x) ∈ K[x]. f(g(x)) is
irreducible in K[x] if and only if f(x) is irreducible in K[x] and g(x)−β
is irreducible in K(β)[x] for every root β of f(x).

In fact, if θ is a root of g(x)− β where β is a root of f(x), then θ is
a root of f(g(x)), and the dimensions [K(β) : K] and [K(θ) : K(β)] are
less than or equal to degf(x) and deg(g(x)− β) = degg(x) respectively.
Thus,

f(g(x)) is irreducible in K[x] if and only if [K(θ) : K] = degf(g(x))
if and only if [K(θ) : K(β)][K(β) : K] = degf(x) · degg(x)
if and only if [K(β) : K] = degf(x) and [K(θ) : K(β)] = degg(x)
if and only if f(x) is irreducible in K[x] and g(x) − β is irreducible

in K(β)[x].
We now discuss about situations that f(g(x)) is separable over K, and

then we ask whether the separability can be replaced by split completely
or solvability by radical. Throughout this paper, we denote Sf◦g and
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Sf the splitting fields for f(g(x)) and f(x) over K respectively, and let
Sg−β be the splitting field for g(x) − β over K(β) where β is a root of
f(x).

Theorem 2.3. Let K be a field and let f(x) and g(x) be in K[x].

(1) f(g(x)) is separable over K if and only if both f(x) is separable
over K and g(x) − β is separable over K(β) for every root β of
f(x).

(2) The term ‘separability’ in (1) can be replaced by ‘splitting com-
pletely’.

(3) The term ‘separability’ in (1) can be replaced by ‘solvability of
radical’.

Proof. Let degf = n and degg = m. Let K̄ be the algebraic closure of
K. If f(g(x)) is separable over K then f(g(x)) has nm distinct roots in
K̄. Let β = β1, β2, ..., βn be roots of f(x) in K̄. Since deg(g(x)−βi) = m
for all 1 ≤ i ≤ n, g(x)−βi has at most m distinct roots in K̄. And since
roots of g(x)− βi are roots of f(g(x)) due to Lemma 2.1, we may write
f(g(x)) =

∏n
i=1(g(x) − βi). Because f(g(x)) has exactly nm distinct

roots in K̄, there must exist n distinct βi’s and m distinct roots of
each g(x) − βi, this means that both f(x) and g(x) − βi are separable
polynomials.

Conversely, if f(x) has n distinct roots β = β1, β2, ..., βn, and g(x)−βi

(1 ≤ i ≤ n) has m distinct roots in K̄ then f(g(x)) =
∏n

i=1(g(x) − βi)
has nm distinct roots in K̄ thus f(g(x)) is separable over K.

(2) If f(g(x)) splits completely in a field F over K then Sf◦g is con-
tained in F . Since Sf and Sg−β are contained in Sf◦g ⊆ F due to Lemma
2.1, both f(x) and g(x)− β split completely in F .

Conversely, suppose that both f(x) ∈ K[x] and g(x) − β ∈ K(β)[x]
split completely in F . Let α be a root of f(g(x)). Since g(α) is a root
of f(x), g(α) belongs to F . By regarding β as g(α), α is a root of
g(x)− β ∈ K(β)[x] = K[x], thus α belongs to F .

(3) Now for the solvability, assume f(g(x)) is solvable by radical
over K. Then the Galois group Gal

(
f(g(x))/K

)
= Gal

(
Sf◦g/K

)

is a solvable group. Since both Sf and Sg−β are contained in Sf◦g,
Gal(f(x)/K) = Gal

(
Sf/K

)
and

Gal
(
g(x)− β/K(β)

)
= Gal

(
Sg−β/K(β)

)
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are homomorphic images of Gal
(
Sf◦g/K

)
. Since the homomorphic im-

age of solvable group is solvable, f(x) is solvable by radical over K and
g(x)− β is solvable by radical over K(β).

On the other hand, we assume f(x) and g(x) − β (β : any root of
f(x)) are solvable by radical over K and K(β) respectively. Let α be a
root of f(g(x)). Then g(α) is a root of f(x) ∈ K[x] since f(g(α)) = 0.
If we denote g(α) by β then α is a root of g(x) − β ∈ K(β)[x], for
g(α) − β = g(α) − g(α) = 0. Since f(x) is solvable by radical, we have
a tower of radical extension fields of K that

K < K(a1) < · · · < K(a1, . . . , as) < K(a1, . . . , as, β),

where ai ∈ K̄, avi
i ∈ K(a1, . . . , ai−1) for vi > 0 (1 ≤ i ≤ s), and

βt ∈ K(a1, . . . , as) for t > 0. And g(x)−β are solvable by radical yields
a tower of radical extension fields of K(β) that,

K(β) < K(β, b1) < · · · < K(β, b1, . . . , bu) < K(β, b1, . . . , bu, α),

where bj ∈ K̄, b
wj

j ∈ K(β, b1, . . . , bj−1) for 1 ≤ j ≤ u, and αv ∈
K(β, b1, . . . , bu) for some v, wj > 0. Combining the above two towers of
fields, we get

K < . . . < K(a1, . . . , as, β) < K(β, b1, a1, . . . , as) < . . .

< K(β, b1, . . . , bu, α, a1, . . . , as).

This is clearly a radical extension tower over K containing the splitting
field of f(g(x)), so f(g(x)) is solvable by radical.

We have seen that there are irreducible polynomials f(x) whose all
iterations are irreducible, while there are also irreducible polynomials
g(x) whose iterations are not irreducible, for example f(x) = x2−x+1 ∈
Z[x] and g(x) = x2 + 10x + 17 ∈ Z[x]. We shall consider a family of
irreducible polynomials whose all iterations are irreducible.

An irreducible polynomial f(x) =
∑k

i=0 aix
i ∈ Z[x] is called p-

Eisenstein if the prime p satisfies the Eisenstein’s criterion, that is,
p|a0, p|a1, · · · , p|ak−1, p 6 |ak, and p2 6 |a0.

Consider a polynomial f(x) = x3 +2x2 +2x+2 ∈ Q[x]. It is obvious
that f(x) is an irreducible polynomial by Eisenstein criterion with p = 2.
Moreover it can be checked by Maple package that f2(x) of degree 9 and
f3(x) of degree 27 are irreducible.

Theorem 2.4. Every composition of irreducible polynomial of the
form p-Eisenstein is irreducible.
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Proof. We shall show that, if f1, f2, · · · , fn are p-Eisenstein then
f1 ◦ f2 ◦ · · · ◦ fn is p-Eisenstein. Let f1(x) =

∑k
i=0 aix

i and f2(x) =∑s
i=0 bix

i. The prime satisfies p|a0, p|a1, · · · , p|ak−1, p 6 |ak, and p2 6 |a0,
and p|b0, p|b1, · · · , p|bs−1, p 6 |bs, and p2 6 |b0. By mod p, f1(x) ≡ akx

k

and f2(x) ≡ bsx
s, thus

f1(f2(x)) ≡ f1(bsx
s) ≡ ak(bsx

s)k = (akbs
k)xsk (mod p).

This means that every coefficient of f1(f2(x)) except the largest degree
term are all 0 by mod p, that is, divisible by p. If p|akbs

k then either
p|ak or p|bs, which is not true. Hence p 6 |akbs

k. Suppose p2 divides
the constant term of f1(f2(x)). The constant term of f1(f2(x)) is (f1 ◦
f2)(0) = f1(f2(0)) = f1(b0) = a0 + a1b0 + a2b0

2 + · · · + akb0
k. Since

ai (1 ≤ i < k) and b0 are multiple of p, aib0
j are multiple of p2 for all

1 ≤ i < k; 0 ≤ j ≤ k. Hence if p2|(f1 ◦ f2)(0) then it should be p2|a0,
which is a contradiction. Thus p2 6 |f1(f2(0)). Therefore f1(f2(x)) is
p-Eisenstein.

Suppose that f1 ◦ f2 ◦ · · · ◦ fn−1 is p-Eisenstein. Then f1 ◦ f2 ◦ · · · ◦ fn

which is the composition (f1 ◦ f2 ◦ · · · ◦ fn−1) ◦ fn of two p-Eisenstein
polynomials is p-Eisenstein.

In next theorem, by taking g(x) more specifically, for instance, as a
binomial polynomial g(x) = xm − b (m > 0), which is of course solvable
by radical, we can prove that the composition of f and g is solvable by
radical.

Theorem 2.5. Let f(x) and g(x) ∈ K[x]. If f is solvable by radical
and g(x) = xm − b (b ∈ K) then f(g(x)) is solvable by radical.

Proof. Let α be a root of f(g(x)). Since f is solvable by radical, g(α)
which is a root of f(x) has a radical expression, say g(α) = n

√
u for some

u ∈ K. Thus n
√

u = g(α) = αm − b implies that α = m
√

n
√

u + b, which
is a radical expression over K. Hence f(g(x)) is solvable by radical.

Remark that we do not know whether g(f(x)) is solvable in the above
theorem.

3. Galois group of composite polynomials

The solvability by radical of polynomial has a strong relationship to
the solvability of Galois group of the polynomial, so in this section we
will concern the Galois group of composite polynomials.
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Theorem 3.1. Let σ be any element in Gal
(
Sf◦g/K

)
. And let β be

a root of f(x). Then

(1) σ|Sf
belongs to Gal (f(x)/K).

(2) If the restriction of σ to K(β) is identity, then σ|Sg−β
is contained

in Gal ((g(x)− β)/K(β)).

Proof. We first note that Gal
(
Sf◦g/K

)
= Gal

(
f(g(x))/K

)
. Let

n = deg(f(x)) and m = deg(g(x)). We shall show that the restriction
of σ to Sf maps roots of f(x) to roots of f(x).

We denote the roots of f(g(x)) over K by αij (i = 1, · · · , n; j =
1, · · · ,m). Let β1 = β, · · · , βn be zeros of f(x) over K. Since g(αij) are
zeros of f(x), we may correspond g(αij) = βi.

For any σ ∈ Gal
(
Sf◦g/K

)
, σ(αij) = αi′j′ for some 1 ≤ i′ ≤ n;

1 ≤ j′ ≤ m, thus

βi′ = g(αi′j′) = g(σ(αij)) = σ(g(αij)) = σ(βi).

Hence σ maps βi to βi′ , so the restriction σ|Sf
of σ to Sf belongs to

Gal
(
Sf/K

)
.

For (2), we will show that any automorphism over Sf◦g maps roots of
g(x)− β to roots of g(x)− β. Let θi1, · · · , θim be roots of g(x)− βi over
K(βi). Then g(θij) = βi for j = 1, · · · ,m, and every θij (i = 1, · · · , n)
are roots of f(g(x)). Moreover since f(g(x)) =

∏n
i=1(g(x)−βi), g(θij) =

βi for i = 1, · · · , n and j = 1, · · · ,m are all zeros of f(g(x)).
Then any σ in Gal

(
Sf◦g/K

)
maps σ(θij) = θi′j′ for some 1 ≤ i′ ≤ n

and 1 ≤ j′ ≤ m, thus

βi′ = g(θi′j′) = σg(θij) = σ(βi) = βi,

for the restriction of σ to K(β) is identity. Hence i = i′, σ(θij) = θij′ ,

and σ maps a roots of g(x)− βi to another root. Thus σ ∈ Gal
(
g(x)−

β/K(β)
)
.

Let A and B be nonempty disjoint finite sets, and let G and H be
permutation groups on A and B respectively. Let HA be the group of
all functions {θ : A → H} with the canonical multiplication rule, and
let A act on HA by the formula θa(b) = θ(a)(b) for any a, b ∈ A. Let us
define a map on A×B by,

[g, θ] : A×B → A×B, (a, b) 7→ (g(a), θ(a)(b)),
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for g ∈ G and θ ∈ HA. Then [g, θ] ∈ Sym(A × B) and [g, θ] forms a
subgroup of Sym(A × B). The subgroup of Sym(A × B) is called the
wreath product of G by H, and is denoted by G[H].

Lemma 3.2. [4] Any element [g; λ] with g ∈ G, λ ∈ HA satisfies the
followings:

(1) [g; λ](a, b) =
(
g(a), λ(a)b

)
for a ∈ A, b ∈ B.

(2) [g; λ][x; µ](a, b) = [g; λ]
(
x(a), µ(a)b

)
=

(
gx(a), λ(x(a))µ(a)b

)

= [gx; λ(x(a))µ](a, b) for x ∈ G, µ ∈ HA.

(3) [g; λ]−1 = [g−1;λ
(
g−1(a)

)−1
].

(4) |G[H]| = |G||H||A|.

One of the important results about Gal
(
f(g(x))/K

)
is that the Ga-

lois group is a wreath product of certain groups ([6]). In the early 1980’s,
it was asked the Galois group Gal (fr(x)/Q) of iterate fr(x) (r > 0) over
Q when f(x) = x2 + 1. It is not hard to see that all fr(x) are irre-
ducible over the rational. In 1988, Odoni [7] proved that Gal (fr(x)/Q)
is [C2]r for r ≤ 750, where [C2]r = C2[· · · [C2] · · · ] denotes the r-fold
wreath product of the cyclic group C2 of order 2 with itself. He gave
an algorithm for testing Gal (fr(x)/Q) ∼= [C2]r for any given r. Cre-
mona [1] carried out the algorithm of Odoni up to r = 5 · 107. He
conjectured that Gal (fr(x)/Q) ∼= [C2]r for all r. Moreover for any m-
th iteration fm of f , it was proved that if f(x) = x2 − b ∈ Z[x] then
Gal

(
fm/Q

) ∼= [C2]m. And if f(x) = xn − b with some (minor) condi-

tions then Gal
(
fm/Q(εn)

) ∼= [Cn]m. We remark the following lemmas
for convenience.

Lemma 3.3. [2] Let K be a field of characteristic 0 and let f(x),
g(x) ∈ K[x] with degg(x) = m. Assume f(g(x)) is separable over K.

Then there is a monomorphism of Gal
(
f(g(x))/K

)
into Gal(f/K)[Sm],

where Sm is the symmetric m-group.

Lemma 3.4. [6] Let K0 be any field, ti (i = 1, · · · ,m) be alge-
braically independent over K0, and K be any extension of K0. Let
φ : K0(t1, · · · , tm) → K be a K0-algebra morphism, i.e., φ is a spe-

cialization of parameters, and let φ̃ : K0(t1, · · · , tm)[x] → K[x] be the
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induced map from φ. If g(x) ∈ K0(t1, · · · , tm)[x] where φ̃(g(x)) is sep-

arable over K then Gal
(
φ̃(g(x))/K

)
is isomorphic to a subgroup of

Gal
(
g(x)/K0(t1, · · · , tm)

)
.

Lemma 3.4 yields the principle that “Galois groups can not increase
under (separable) specialization of parameters.”

Theorem 3.5. Let Kbe a field of characteristic 0 and let f(x), g(x) ∈
K[x] be such that f(g(x)) is separable over K. If f(x) is solvable by
radical and deg g(x) < 5 then f(g(x)) is solvable by radical.

Proof. We may consider an injective homomorphism

φ : Gal
(
f(g(x))/K

)
→ Gal(f(x)/K)[Sm]

due to Lemma 3.3. Since f(x) is solvable by radical, the Galois group
Gal(f(x)/K) is solvable. Moreover Sm is a solvable group for m < 5.
Since the wreath product of solvable groups is a solvable group ([8],
Theorem 2.3.2), the wreath product Gal(f(x)/K)[Sm] is solvable, and
so is its subgroup Gal

(
f(g(x))/K

)
. Thus f(g(x)) is solvable by radical.

Theorem 3.6. Let K be a field of characteristic 0, t be an inde-
terminate over K, and let K(t) be the rational function field in one
variable t over K. Let g(x) = xm + ax + b ∈ K[x] and ĝ(t, x) =
xm + ax + t ∈ K(t)[x]. Then Gal

(
g(x)/K

)
is isomorphic to a subgroup

of G = Gal
(
ĝ(t, x)/K(t)

)
.

Proof. Let φ be a morphism K(t) → K which maps t to b and ai ∈ K

to ai itself, and let φ̃ : K(t)[x] → K[x] be the induced map from φ. Then
φ̃
(
ĝ(t, x)

)
= g(x).

For any ĥ(t, x) = xr + ar−1x
r−1 + · · · + a1x + t ∈ K(t)[x], it is easy

to see that,

φ̃
(
ĝ(t, x)ĥ(t, x)

)
= φ̃

(
ĝ(t, x)

)
φ̃
(
ĥ(t, x)

)
.

Thus if g(x) is irreducible over K, then ĝ(t, x) is irreducible over K(t).
In fact, if ĝ(t, x) = ĝ1(t, x)ĝ2(t, x) with non unit ĝi ∈ K(t)[x] (i = 1, 2),
then

g(x) = φ̃
(
ĝ(t, x)

)
= φ̃

(
ĝ1(t, x)

)
φ̃
(
ĝ2(t, x)

)

and φ̃(ĝi(t, x)) is not unit in K[x].
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Moreover if g(x) is separable over K then so is ĝ(t, x) over K(t).
Indeed, suppose ĝ(t, x) = (x−v1(t))n1 · · · (x−vk(t))nk where we assume
that vi(t) (t = 1, ..., k) are distinct polynomials in some splitting field
extensions of K(t), and ni ≥ 1 with

∑k
i=1 ni = degĝ = m. If we apply

φ̃ to ĝ(t, x) then we have

g(x) = φ̃
(
ĝ(t, x)

)
= (x− φ(v1(t)))n1 · · · (x− φ(vk(t)))nk

in a splitting field extension of K. Since g(x) is separable over K, we
have that every ni = 1 and φ(vi(t)) are distinct in K. Hence we may
say every vi(t) belongs to K(t) and distinct. Thus ĝ(t, x) is separable
over K(t).

Therefore due to Lemma 3.4, we conclude that

Gal(g(x)/K) = Gal
(
φ̃(ĝ(t, x))/K

)

is isomorphic to a subgroup of Gal
(
ĝ(t, x)/K(t)

)
.

We now turn our attention to polynomials over Hilbertian field. When
we say a field K is Hilbertian, we mean that for any irreducible poly-
nomial f(t, x) ∈ K(t)[x] there exist infinitely many b ∈ K such that
the specialization t → b ∈ K is defined on f(t, x) and the specialized
polynomial f(b, x) is irreducible as a polynomial in K[x].

Theorem 3.7. Let the context be as in Theorem 3.6, that is, t is
an indeterminate over K, K(t) is the rational function field in one
variable t over K. Let g(x) = xm + ax + b ∈ K[x] and ĝ(t, x) =
xm+ax+t ∈ K(t)[x]. If we assume K is Hilbertian then Gal

(
g(x)/K

) ∼=
Gal

(
ĝ(t, x)/K(t)

)
.

Proof. Since K is Hilbertian, if ĝ(t, x) is irreducible in K(t)[x] then
there is an infinite subset Γ ⊂ K such that for any u ∈ Γ, the special-
ization φ : t 7→ u induces φ̃(ĝ(t, x)), which is irreducible in K[x].

Let φ̃ : K(t)[x] → K[x] be the induced map from φ. Without loss
of generality, we may consider b ∈ Γ, hence φ̃(ĝ(t, x)) = ĝ(b, x) = g(x).
Thus the irreducibility of ĝ(t, x) over K(t) implies the irreducibility of
g(x) over K. Therefore, Gal

(
ĝ(t, x)/K

)
= Gal

(
g(x)/K

)
.
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