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A POSITIVE PRESENTATION
FOR THE PURE BRAID GROUP

Eon-Kyung Lee*

Abstract. For the pure braid groups, this paper gives a positive
finite presentation whose generators are the standard Artin gen-
erators, and determines whether the submonoid generated by the
Artin generators is a Garside monoid or not.

1. Introduction

The braid groups Bn, n > 2, have two well-known group presen-
tations. The first one is the Artin presentation discovered by Emil
Artin [1]. It has generators σ1, . . . , σn−1 and defining relations:{

σiσj = σjσi if |i− j| > 2,
σiσjσi = σjσiσj if |i− j| = 1.

The second one is the dual presentation discovered by Birman, Ko
and Lee [4]. It has generators aij for 1 6 j < i 6 n and defining
relations:{

arsaij = aijars if (r − i)(r − j)(s− i)(s− j) > 0,
aijajk = ajkaik = aikaij if 1 6 k < j < i 6 n.

See Figure 1(a, b) for the generators σi and aij . They are related as
follows:

σi = a(i+1)i for i = 1, . . . , n− 1,
aij = (σi−1 · · ·σj+1)σj(σ−1

j+1 · · ·σ−1
i−1) for 1 6 j < i 6 n.

The Artin and dual presentations of Bn are positive presentations:
all the defining relations are described only in terms of positive words.
(A word is called a positive word if it only involves positive powers of
the generators.) Therefore these presentations define not only the group
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Figure 1. generators

Bn, but also monoids. In the late sixties, Garside [9] studied the monoid
B+

n consisting of braids represented by positive words in σ1, . . . , σn−1,
and solved the word and conjugacy problems. Later, Birman, Ko and
Lee [4] showed that all the machineries developed by Garside can be
applied to the monoid arising from the dual presentation. Dehornoy
and Paris [8] introduced the notion of Garside monoid and Garside
group, and showed that the monoids arising from the Artin and dual
presentations are Garside monoids.

There is a natural epimorphism from the braid group Bn to the sym-
metric group Σn on n objects, defined by sending σi ∈ Bn to the trans-
position (i, i + 1) ∈ Σn. The kernel of this homomorphism is called the
pure braid group, denoted by Pn.

For 1 6 i < j 6 n, let Aij = Aji = a2
ji. See Figure 1(c). In [1], Artin

found a group presentation for Pn. It has generators Aij for 1 6 i < j 6
n and defining relations:

(A1) A−1
rs AijArs = Aij if r < s < i < j or i < r < s < j;

(A2) A−1
ri AijAri = ArjAijA

−1
rj if r < i < j;

(A3) A−1
is AijAis = (AijAsj)Aij(AijAsj)−1 if i < s < j;

(A4) A−1
rs AijArs = (ArjAsjA

−1
rj A−1

sj )Aij(ArjAsjA
−1
rj A−1

sj )−1

if r < i < s < j.

Comparing with the presentations of Bn, the above presentation of
Pn is much more complicated. Moreover, it is not a positive presenta-
tion, hence it does not define a monoid. Recently, Margalit and Mc-
Cammond [10] proposed positive presentations for Pn, by using new
generators.

In this paper, we are interested in the standard Artin generators
for Pn. First, we give a positive presentation for Pn, using the Artin
generators.

Theorem 1.1. The pure braid group Pn is generated by {Aij | 1 6
i < j 6 n} subject to the following three types of relations:
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(P1) AijArs = ArsAij if r < s < i < j or i < r < s < j;

(P2) AjiAirArj = AirArjAji = ArjAjiAir if r < i < j;

(P3) Ars(AjrAjiAjs) = (AjrAjiAjs)Ars if r < i < s < j.

Next, we decide whether the submonoid of Pn generated by the Artin
generators is a Garside monoid or not.

Theorem 1.2. Let P+
n be the submonoid of Pn generated by the

Artin generators Aij for 1 6 i < j 6 n. Then the monoid P+
n is a

Garside monoid for n = 2, 3, but it is not for n > 4.

2. Garside monoids and groups

This section briefly reviews Garside monoids and Garside groups.
See [8, 7] for details.

For a monoid M , let 1 denote the identity element. An element
a ∈ M \ {1} is called an atom if a = bc for b, c ∈ M implies either b = 1
or c = 1. For a ∈ M , let ‖a‖ be the supremum of the lengths of all
expressions of a in terms of atoms. The monoid M is said to be atomic
if it is generated by its atoms and ‖a‖ < ∞ for any element a of M . In
an atomic monoid M , there are partial orders 6L and 6R: a 6L b if
ac = b for some c ∈ M ; a 6R b if ca = b for some c ∈ M .

Definition 2.1. An atomic monoid M is called a Garside monoid if
it satisfies the following properties:

(i) M is left and right cancellative.
(ii) (M, 6L) and (M, 6R) are lattices. That is, for every a, b ∈ M

there are a unique least common multiple a ∨L b (resp. a ∨R b)
and a unique greatest common divisor a ∧L b (resp. a ∧R b) with
respect to 6L (resp. 6R).

(iii) M contains an element ∆, called a Garside element, satisfying the
following:
(a) for each a ∈ M , a 6L ∆ if and only if a 6R ∆;
(b) the set {a ∈ M | a 6L ∆} is finite and generates M .

A Garside group is defined as the group of fractions of a Garside
monoid. When M is a Garside monoid and G is the group of fractions
of M , we identify the elements of M and their images in G. The ordered
pair (M, ∆) is called a Garside structure on G. We remark that a given
group G may admit more than one Garside structure.
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Definition 2.2. Let M be a Garside monoid, and let a, b, c ∈ M .
The element c is called a left common multiple of a and b if a 6L c and
b 6L c. And the element a ∨L b is called a left lcm of a and b.

3. Proof of Theorem 1.1

Note that the generators of the presentation in Theorem 1.1 are the
same as those of the Artin presentation. Since it is straightforward
to check that the relations (P1)–(P3) can be derived from the Artin
relations, it suffices to show that the Artin relations can be derived from
the relations (P1)–(P3). Recall that Apq = Aqp for any 1 6 p < q 6 n.

(A1) is the same as (P1).
After rearranging, (A2) is equivalent to AijAriArj = AriArjAij with

r < i < j, which is the first identity of (P2).
After rearranging, (A3) is equivalent to

(A3′) AijAisAijAsj = AisAijAsjAij with i < s < j.

This relation can be derived from (P2) as follows:

LHS of (A3′) = Aij(AsiAijAjs)
(P2)
= (AijAjsAsi)Aij

(P2)
= AsiAijAjsAij

= RHS of (A3′).

The relation (A4) is

A−1
rs AijArs = (ArjAsjA

−1
rj A−1

sj )Aij(AsjArjA
−1
sj A−1

rj )

with r < i < s < j. After rearranging, this is equivalent to

(A4′) AijArsArjAsjA
−1
rj = ArsArjAsjA

−1
rj A−1

sj AijAsj .

Since

LHS of (A4′) = Aij(AsrArjAjs)A−1
rj

(P2)
= Aij(AjsAsrArj)A−1

rj

= AijAjsAsr,

RHS of (A4′) = (AsrArjAjs)A−1
rj A−1

sj AijAsj

(P2)
= (AjsAsrArj)A−1

rj A−1
sj AijAsj

= AjsAsrA
−1
sj AijAsj ,
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(a) Aji (b) AirArj (c) Air (d) ArjAji

(e) Arj (f) AjiAir (g) Ars (h) AjrAjiAjs

Figure 2. The pairs of braids which commute each other.

(A4) is equivalent to AijAjsAsr = AjsAsrA
−1
sj AijAsj . By multiplying

Arj to the left, this is equivalent to

(A4′′) ArjAijAjsAsr = ArjAjsAsrA
−1
sj AijAsj with r < i < s < j.

This relation can be derived from (P2) and (P3) as follows:

RHS of (A4′′) = (ArjAjsAsr)A−1
sj AijAsj

(P2)
= (AsrArjAjs)A−1

sj AijAsj = Ars(AjrAjiAjs)
(P3)
= (AjrAjiAjs)Ars = LHS of (A4′′).

This completes the proof.

Remark 3.1. Like (P1), the relations (P2) and (P3) can be viewed
as commutativity relations:

Aji(AirArj) = (AirArj)Aji;
Air(ArjAji) = (ArjAji)Air;
Arj(AjiAir) = (AjiAir)Arj ;
Ars(AjrAjiAjs) = (AjrAjiAjs)Ars.

It is easy to see from Figure 2 that the pairs of braids in the above
identities commute.

4. Proof of Theorem 1.2

For n = 2, the pure braid group Pn is an infinite cyclic group gen-
erated by A12, hence we are done because Z is a Garside group with
Garside monoid Z>0 [3, Example 2].
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Case 1. n = 3
If we set x = A12, y = A31 and z = A23, then the presentation in

Theorem 1.1 becomes

P3 = 〈x, y, z | xyz = yzx = zxy〉.
In this case, the monoid P+

3 is known to be a Garside monoid [8, Example
5].

Case 2. n > 4
Fix n > 4. Assume that P+

n is a Garside monoid. From the relations
(P2) and (P3), we have

A31A14A43 = A14A43A31,

A13(A41A42A43) = (A41A42A43)A13.

Therefore both A31A14A43 and A13A41A42A43 are left common multiples
of A13 and A14.

Let α ∈ P+
n be the left lcm of A13 and A14. Because left common

multiples of A13 and A14 have word-length at least 2, the word-length
of α is either 2 or 3.

Subcase 2.1. α has word-length 3.
Since we have assumed that P+

n is a Garside monoid, by the unique-
ness of left lcm, one has α = A31A14A43. Hence

A13A41A42A43 = αX = A31A14A43X

for some Artin generator X. From the above equations, one has X =
A−1

43 A42A43.
Meanwhile, it is well-known that the set {Ai4 | i ∈ {1, . . . , n}\{4}}

generates the free group Fn−1 [2]. Therefore X cannot be a generator,
which is a contradiction.

Subcase 2.2. α has word-length 2.
In this case, there are Artin generators X and Y such that

α = A13X = A14Y.

Let φ : Pn → P3 be the homomorphism obtained by deleting all the
k-th strands for k 6= 1, 3, 4. Using the convention of P3 = 〈x, y, z | xyz =
yzx = zxy〉 in Case 1, φ sends the monoid P+

n to P+
3 such that

φ(A13) = A12 = x, φ(A14) = A13 = y.

Hence we have
φ(α) = xφ(X) = yφ(Y ).

Thus φ(α) ∈ P+
3 is a left common multiple of x and y with word-length

at most 2 because each of φ(X) and φ(Y ) is an Artin generator or the
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identity. This is a contradiction because in the Garside monoid P+
3 the

left lcm of x and y is xyz.
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