ON SOME PROPERTIES OF SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY TRANS-SASAKIAN MANIFOLD ADMITTING A QUARTER-SYMMETRIC NON-METRIC CONNECTION

Mobin Ahmad*, Jae-Bok Jun**, and Mohd Danish Siddiqi***

ABSTRACT. We define a quarter-symmetric non-metric connection in a nearly trans-Sasakian manifold and we consider semi-invariant submanifolds of a nearly trans-Sasakian manifold endowed with a quarter-symmetric non-metric connection. Moreover, we also obtain integrability conditions of the distributions on semi-invariant submanifolds.

1. Introduction

Geometry of submanifolds of Sasakian and Kenmotsu manifolds have been an active area of research (cf. [1], [4] etc.). In 1985, Oubina [16] introduced a new class of almost contact Riemannian manifold known as trans-Sasakian manifold. This class contains α -Sasakian and β -Kenmotsu manifold [12]. Recently, C. Gherghe [10] introduced a nearly trans-Sasakian structure of type (α, β) , which generalizes trans-Sasakian structure in the same sense as nearly Sasakian generalizes Sasakian one. A trans-Sasakian structure is always a nearly trans-Sasakian structure. Moreover, a nearly trans-Sasakian structure of type (α, β) is nearly Sasakian [4] or nearly Kenmotsu [1] or nearly cosymplectic [7] accordingly as $\beta = 0$ or $\alpha = 0$ or $\alpha = \beta = 0$.

In 1986, Bejancu [5] introduced the notion of semi-invariant or contact CR-submanifolds as a generalization of invariant and anti-invariant

Received November 02, 2011; Accepted January 20, 2012.

²⁰¹⁰ Mathematics Subject Classification: Primary 53C40.

Key words and phrases: semi-invariant submanifolds, nearly trans-Sasakian manifolds, quarter-symmetric non-metric connection, Gauss and Weingarten equations, integrability conditions, distributions.

Correspondence should be addressed to Jae-Bok Jun, jbjun@kookmin.ac.kr.

submanifolds of an almost contact metric manifold and was followed by several geometers (see [6], [8], [13], [18]).

Let ∇ be a linear connection in an n-dimensional differentiable manifold M.

The torsion tensor T and the curvature tensor R of ∇ are respectively given by

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y],$$

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

The connection ∇ is symmetric if the torsion tensor T vanishes, otherwise it is non-symmetric. The connection ∇ is metric if there is a Riemannian metric g in M such that $\nabla g = 0$, otherwise it is non-metric. It is well known that a linear connection is symmetric and metric if and only if it is the Levi-Civita connection. In [11], S. Golab introduced the idea of a quarter-symmetric connection. A linear connection is said to be a quarter-symmetric connection if its torsion tensor T is of the form

$$T(X,Y) = u(Y)\phi X - u(X)\phi Y,$$

where u is a 1-form and ϕ is a tensor field of type (1, 1). Some properties of quarter symmetric connections are studied in [15, 17].

Moreover, the properties of submanifolds of a Riemannian manifold with quarter-symmetric semi-symmetric connection and quarter-symmetric non-metric connection were studied by L.S. Das et al. in [8, 9]. In [2, 3], M. Ahmad et al. studied some characteristic properties of submanifolds and hypersurfaces of an almost r-paracontact Riemannian manifold endowed with semi-symmetric and quarter-symmetric connections respectively.

In this paper, we study semi-invariant submanifolds of nearly trans-Sasakian manifolds with a quarter-symmetric non-metric connection. The rest of the paper is organized as follows. In Section 2, we give a brief introduction of nearly trans-Sasakian manifold. In Section 3, we recall some necessary details about semi-invarint submanifolds. In Section 4, we derive Nijenhuis tensor for nearly trans-Sasakian manifold with quarter-symmetric non-metric connection. In Section 5, some basic results on nearly trans-Sasakian manifold with quarter-symmetric non-metric connection are obtained. In Sections 6, 7 and 8, integrability of some distributions on nearly trans-Sasakian manifold are discussed.

2. Nearly trans-Sasakian manifold

Let \bar{M} be an almost contact metric manifold [7] with an almost contact metric structure (ϕ, ξ, η, g) , where ϕ is a (1, 1)-tensor field, ξ is a vector field, η is a 1-form and g is a compatible Riemannian metric such that

(2.1)
$$\phi^2 = -I + \eta \otimes \xi, \ \phi \xi = 0, \ \eta \circ \phi = 0, \ \eta(\xi) = 1,$$

$$(2.2) g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

(2.3)
$$g(X, \phi Y) = -g(\phi X, Y), \ g(X, \xi) = \eta(X)$$

for all vector fields X, Y on $T\bar{M}$. There are two known classes of almost contact metric manifolds, namely Sasakian and Kenmotsu manifolds. Sasakian manifolds are characterized by the tensorial relation

$$(\bar{\nabla}_X \phi)Y = q(X, Y)\xi - \eta(Y)X,$$

while Kenmotsu manifolds are given by the tensor equation

$$(\bar{\nabla}_X \phi)Y = g(\phi X, Y)\xi - \eta(Y)\phi X.$$

An almost contact metric structure (ϕ, ξ, η, g) on \bar{M} is called a trans-Sasakian structure if [16]

$$(2.4) \ (\bar{\nabla}_X \phi)(Y) = \alpha(g(X, Y)\xi - \eta(Y)X) + \beta(g(\phi X, Y)\xi - \eta(Y)\phi X)$$

for some smooth functions α and β on \bar{M} and we say that the trans-Sasakian structure is of type (α, β) . From the formula (2.4), it follows that [16]

(2.5)
$$\bar{\nabla}_X \xi = -\alpha \phi X + \beta (X - \eta(X)\xi).$$

The class $C_6 \oplus C_5$ [14] coincides with the class of trans-Sasakian structures of type (α, β) .

We note that trans-Sasakian structures of type (0,0) are cosymplectic [7], trans-Sasakian structures of type $(\alpha,0)$ are α -Sasakian and $(0,\beta)$ type are β - Kenmotsu [12]. Recently, C. Gherghe [10] introduced a nearly trans-Sasakian structure of type (α,β) . An almost contact metric structure (ϕ,ξ,η,g) on \bar{M} is called a nearly trans-Sasakian structure [10] if

(2.6)
$$(\bar{\nabla}_X \phi) Y + (\bar{\nabla}_Y \phi) X = \alpha (2g(X, Y)\xi - \eta(Y)X - \eta(X)Y) - \beta (\eta(Y)\phi X + \eta(X)\phi Y).$$

A trans-Sasakian structure is always a nearly trans-Sasakian structure. Moreover a nearly trans-Sasakian structure of type (α, β) is nearly-Sasakian [4], nearly Kenmotsu [1] or nearly cosymplectic [7] accordingly as $\beta = 0$, $\alpha = 1$; or $\alpha = 0$, $\beta = 1$; or $\alpha = 0$, $\beta = 0$ respectively.

A nearly trans-Sasakian structure of type (α, β) will be called α -Sasakian (resp. nearly β -Kenmotsu) if $\beta = 0$ (resp. $\alpha = 0$). Thus the structural equations for nearly α -Sasakian, nearly Sasakian, nearly β -Kenmotsu, nearly kenmotsu and nearly cosympletic manifolds are given by

(2.7)
$$(\bar{\nabla}_X \phi) Y + (\bar{\nabla}_Y \phi) X = \alpha (2g(X, Y)\xi - \eta(Y)X - \eta(X)Y),$$

$$(2.8) \qquad (\bar{\nabla}_X \phi) Y + (\bar{\nabla}_Y \phi) X = 2g(X, Y) \xi - \eta(Y) X - \eta(X) Y,$$

(2.9)
$$(\bar{\nabla}_X \phi) Y + (\bar{\nabla}_Y \phi) X = -\beta(\eta(Y)\phi X + \eta(X)\phi Y),$$

$$(2.10) \qquad (\bar{\nabla}_X \phi) Y + (\bar{\nabla}_Y \phi) X = -\eta(Y) \phi X - \eta(X) \phi Y,$$

(2.11)
$$(\bar{\nabla}_X \phi) Y + (\bar{\nabla}_Y \phi) X = 0$$

respectively.

Now we remark that owing to the existence of a 1-form η , we can define a quarter-symmetric non-metric connection in an almost contact manifold by

(2.12)
$$\bar{\nabla}_X Y = \bar{\bar{\nabla}}_X Y + \eta(Y) \phi X.$$

An almost contact metric structure (ϕ, ξ, η, g) on \bar{M} is called a nearly trans-Sasakian structure if (2.6) holds.

Using (2.12) and (2.6), we get

$$(2.13) (\overline{\nabla}_X \phi) Y + (\overline{\nabla}_Y \phi) X = \alpha (2g(X, Y)\xi + (1 - \alpha)(\eta(X)Y + \eta(Y)X)) -\beta(\eta(Y)\phi X + \eta(X)\phi Y) - 2\eta(X)\eta(Y)\xi,$$

$$(2.14) (\bar{\nabla}_X \phi) Y + (\bar{\nabla}_Y \phi) X = \alpha (2g(X, Y)\xi + (1 - \alpha)(\eta(X)Y + \eta(Y)X))$$
$$-2\eta(X)\eta(Y)\xi,$$

$$(2.15) \qquad (\bar{\nabla}_X \phi) Y + (\bar{\nabla}_Y \phi) X = 2g(X, Y) \xi - 2\eta(X) \eta(Y) \xi,$$

(2.16)
$$(\bar{\nabla}_X \phi) Y + (\bar{\nabla}_Y \phi) X = \eta(X) Y + \eta(Y) X - 2\eta(X) \eta(Y) \xi$$
$$-\beta(\eta(Y) \phi X + \eta(X) \phi Y),$$

(2.17)
$$(\bar{\nabla}_X \phi) Y + (\bar{\nabla}_Y \phi) X = \eta(X) Y + \eta(Y) X - 2\eta(X) \eta(Y) \xi$$
$$- \eta(Y) \phi X - \eta(X) \phi Y,$$

$$(2.18) \qquad (\bar{\nabla}_X \phi) Y + (\bar{\nabla}_Y \phi) X = \eta(X) Y + \eta(Y) X - 2\eta(X) \eta(Y) \xi.$$

3. Semi-invariant submanifolds

Let M be a submanifold of a Riemannian manifold \overline{M} with Riemannian metric g. Then the Gauss and Weingarten formulae are respectively given by

$$(3.1) \bar{\nabla}_X Y = \nabla_X Y + h(X, Y), (X, Y \in TM),$$

$$\bar{\nabla}_X N = -A_N X + \nabla_X^{\perp} N + \eta(N) \phi X, \ (N \in T^{\perp} M),$$

where $\bar{\nabla}$, ∇ and ∇^{\perp} are the quarter-symmetric non-metric connection, induced connection and induced normal connections in \bar{M} , M and the normal bundle $T^{\perp}M$ of M respectively, and h is the second fundamental form related to A by

(3.3)
$$g(h(X,Y),N) = g(A_N X,Y).$$

Moreover, if ϕ is a (1,1)-tensor field on \bar{M} for $X \in TM$ and $N \in T^{\perp}M$ we have

(3.4)
$$(\bar{\nabla}_X \phi) Y = (\nabla_X P) Y - A_{FY} X - th(X, Y + \eta(FY) PX + (\nabla_X F) Y + h(X, PY) - fh(X, Y) + \eta(FY) FX,$$

(3.5)
$$(\bar{\nabla}_X \phi) N = (\nabla_X t) N - A_{fN} X - P A_N X + \eta(fN) P X,$$

$$+ (\nabla_X f) N + h(X, tN) - F A_N X + \eta(fN) F X$$

$$+ \eta(N) X - \eta(N) \eta(X) \xi,$$

where

$$\phi X = PX + FX, \ (PX \in TM, FX \in T^{\perp}M),$$

(3.7)
$$\phi N = tN + fN, \ (tN \in TM, fN \in T^{\perp}M),$$
$$(\nabla_X P)Y = \nabla_X (PY) - P\nabla_X Y, \ (\nabla_X F)Y = \nabla_X^{\perp} (FY) - F\nabla_X Y,$$
$$(\nabla_X t)N = \nabla_X (tN) - t\nabla_X^{\perp}N, \ (\nabla_X f)N = \nabla_X^{\perp} (fN) - f\nabla_X^{\perp}N.$$

The submanifold M is said to be totally geodesic if h=0, minimal if H=trace(h)/dim(M)=0 and totally umbilical if h(X,Y)=g(X,Y)H in \bar{M} .

For a distribution D on M, M is said to be D-totally geodesic if for all $X, Y \in D$, we have h(X, Y) = 0. If for all $X, Y \in D$, we have h(X, Y) = g(X, Y)K for some normal vector K, then M is called D-totallyumbilical. For two distributions D and E defined on M, M is

said to be (D, E)-mixed totally geodesic if for all $X \in D$ and $Y \in E$ we have h(X, Y) = 0.

Let D and E be two distributions defined on a manifold M. We say that D is E-parallel if for all $X \in E$ and $Y \in D$ we have $\nabla_X Y \in D$. If D is D-parallel then it is called *autoparallel*.

D is called X-parallel for some $X \in TM$ if for all $Y \in D$ we have $\nabla_X Y \in D$. D is said to be parallel if for all $X \in TM$ and $Y \in D$, $\nabla_X Y \in D$. If a distribution D on M is autoparallel, then it is clearly integrable and by Gauss formula, D is totally geodesic in M. If D is parallel then orthogonal complementary distribution D^{\perp} is also parallel which implies that D is parallel if and only if D^{\perp} is parallel. In this case, M is locally the product of the leaves of D and D^{\perp} .

Let M be a submanifold of an almost contact metric manifold. If $\xi \in TM$, then we write $TM = \{\xi\} \oplus \{\xi\}^{\perp}$, where $\{\xi\}$ is the distribution spanned by ξ and $\{\xi\}^{\perp}$ is the complementary orthogonal distribution of $\{\xi\}$ in M. Then one gets

(3.8)
$$P\xi = 0 = F\xi, \ \eta o P = 0 = \eta o F,$$

(3.9)
$$P^{2} + tF = -I + \eta \otimes \xi, \ FP + fF = 0,$$

(3.10)
$$f^2 + Ft = -I, \ tf + Pt = 0.$$

A submanifold M of an almost contact metric manifold \bar{M} with $\xi \in TM$ is called *semi-invariant* [6] of \bar{M} if there exists two differentiable distributions D^1 and D^0 on M such that

- (i) $TM = D^1 \oplus D^0 \oplus \{\xi\},$
- (ii) the distribution D^1 is invariant by ϕ , that is $\phi(D^1) = D^1$ and
- (iii) the distribution D^0 is anti invariant by ϕ , that is $\phi(D^0) \subseteq T^{\perp}M$.

For $X \in TM$, we can write

(3.11)
$$X = U^{1}X + U^{0}X + \eta(X)\xi,$$

where U^1 and U^0 are the projection operators of TM on D^1 and D^0 respectively. A semi-invariant submanifold of an almost contact metric manifold becomes an invariant submanifold [1,6] (resp. anti-invariant submanifold [1,6]) if $D^0 = \{0\}$ (resp. $D^1 = \{0\}$).

4. Nijenhuis tensor

An almost contact metric manifold is said to be normal [7] if the torsion tensor $N^{(1)}$ vanishes, that is

$$(4.1) N^{(1)} \equiv [\phi, \phi] + 2d\eta \otimes \xi = 0,$$

where $[\phi, \phi]$ is the Nijenhuis tensor of ϕ and d denotes the exterior derivative operator.

In this section, we obtain expression for Nijenhuis tensor $[\phi, \phi]$ of the structure tensor field ϕ given by

(4.2)
$$[\phi, \phi](X, Y) = ((\bar{\nabla}_{\phi X} \phi) Y - (\bar{\nabla}_{\phi Y} \phi) X)$$
$$-\phi((\bar{\nabla}_X \phi) Y - (\bar{\nabla}_Y \phi) X)$$

in a nearly trans-Sasakian manifold. In particular, we derive the expressions for the Nijenhuis tensor $[\phi, \phi]$ in nearly Sasakian manifold and nearly Kenmotsu manifolds.

First, we need the following lemma.

LEMMA 4.1. In an almost contact metric manifold we have

$$(4.3) \qquad (\bar{\nabla}_Y \phi)(\phi X) = -(\phi(\bar{\nabla}_Y \phi)X + ((\bar{\nabla}_Y \eta)X)\xi + \eta(X)\bar{\nabla}_Y \xi.$$

Proof. For $X, Y \in TM$, we have

$$\begin{split} (\bar{\nabla}_Y \phi)(\phi X) &= \bar{\nabla}_Y (\phi^2 X) - \phi(\bar{\nabla}_Y \phi X) + \phi(\phi \bar{\nabla}_Y X) - \phi^2 \bar{\nabla}_Y X \\ &= \bar{\nabla}_Y (-X + \eta(X)\xi) - \phi(\bar{\nabla}_Y \phi X) \\ &+ \phi(\phi \bar{\nabla}_Y X) - (-\bar{\nabla}_Y X + \eta(\bar{\nabla}_Y X)\xi), \end{split}$$

which gives the equation (4.3).

Now, we prove the following theorem.

THEOREM 4.2. In a nearly trans-Sasakian manifold with quartersymmetric non-metric connection, the Nijenhuis tensor $[\phi, \phi]$ of ϕ is given by

$$(4.4) \ [\phi, \phi](X, Y) = 4\phi(\bar{\nabla}_Y \phi)X + 2d\eta(X, Y)\xi - \eta(X)\bar{\nabla}_Y \xi + \eta(Y)\bar{\nabla}_X \xi + (1 - \alpha)(-\eta(Y)\phi X - 3\eta(X)\phi Y) + \alpha(4g(\phi X, Y)\xi + 4\beta\eta(X)\eta(Y)\xi - \beta(-\eta(Y)X + 3\eta(X)Y).$$

Proof. Using Lemma 4.1 and $\eta o \phi = 0$ in (2.6), we get

(4.5)
$$(\bar{\nabla}_{\phi X}\phi)Y = \phi(\bar{\nabla}_{Y}\phi)X - ((\bar{\nabla}_{Y}\eta)X)\xi - \eta(X)\bar{\nabla}_{Y}\xi$$

$$+\alpha(2g(\phi X, Y)\xi - \eta(Y)\phi X)$$

$$-(\beta+1)(-\eta(Y)X + \eta(Y)\eta(X)\xi).$$

Thus we have

$$[\phi,\phi](X,Y) = ((\bar{\nabla}_{\phi X}\phi)Y + \phi((\bar{\nabla}_{Y}\phi)X)) - ((\bar{\nabla}_{\phi Y}\phi)X + \phi(\bar{\nabla}_{X}\phi)Y)$$

$$= 2\phi(\bar{\nabla}_{Y}\phi)X - ((\bar{\nabla}_{Y}\eta)X)\xi - \eta(X)\bar{\nabla}_{Y}\xi + \alpha(2g(\phi X,Y)\xi)$$

$$+ ((\bar{\nabla}_{X}\eta)Y)\xi + \eta(Y)\bar{\nabla}_{X}\xi - \alpha(2g(\phi Y,X)\xi)$$

$$- (1-\alpha)(\eta(Y)\phi X) - \beta(\eta(Y)\phi^{2}X) - 2\phi(\bar{\nabla}_{X}\phi) + \beta(\eta(X)\phi^{2}Y)Y$$

$$= 2\phi((\bar{\nabla}_{Y}\phi)X - (\bar{\nabla}_{X}\phi)Y) + 2d\eta(X,Y)\xi - \eta(X)\bar{\nabla}_{Y}\xi + \eta(Y)\bar{\nabla}_{X}\xi$$

$$+ \beta(\eta(X)\phi^{2}Y - \eta(Y)\phi^{2}X) + \alpha(4g(\phi X,Y)\xi)$$

$$+ (1-\alpha)(\eta(Y)\phi X - \eta(X)\phi Y)$$

$$= 2\phi((\bar{\nabla}_{Y}\phi)X + (\bar{\nabla}_{Y}\phi)X) - 2\alpha\phi(1-\alpha)(\eta(X)Y + \eta(Y)X)$$

$$+ (1-\alpha)(\eta(Y)\phi X + \eta(X)\phi Y) - 2\beta\phi(\eta(Y)\phi X) + \eta(X)\phi Y$$

$$- \eta(X)\bar{\nabla}_{Y}\xi + \eta(Y)\bar{\nabla}_{X}\xi - \beta(\eta(X)\phi^{2}Y - \eta(Y)\phi^{2}X)$$

$$- 2\alpha(2g(X,Y)\xi + \alpha(4g(\phi X,Y)\xi + 2d\eta(X,Y)\xi)$$

$$- 2\eta(X)\eta(Y)\xi$$

$$= 4\phi(\bar{\nabla}_{Y}\phi)X - \eta(X)\bar{\nabla}_{Y}\xi + \eta(Y)\bar{\nabla}_{X}\xi + 2d\eta(X,Y)\xi$$

$$+ (1-\alpha)(-\eta(Y)\phi X - 3\eta(X)\phi Y) + \alpha(4g(\phi X,Y)\xi)$$

$$+ \beta(-\eta(Y)X - 3\eta(X)Y) + 4\beta\eta(X)\eta(Y)\xi,$$
which implies the equation (4.4).

From equation (4.4), we get

(4.6)
$$\eta(N^{1}(X,Y)) = 4d\eta(X,Y) - 4\alpha g(X,\phi Y).$$

In particular, if X and Y are perpendicular to ξ , then (4.4) gives

$$[\phi, \phi](X, Y) = 4\phi(\overline{\nabla}_Y \phi)X - 2\eta([X, Y])\xi.$$

COROLLARY 4.3. In a nearly Sasakian manifold with quarter-symmetric non-metric connection, the Nijenhuis tensor $[\phi, \phi]$ of ϕ is given by

(4.8)
$$[\phi, \phi](X, Y) = 4\phi(\bar{\nabla}_Y \phi)X + 2d\eta(X, Y)\xi - \eta(X)\bar{\nabla}_Y \xi$$
$$+ \eta(Y)\bar{\nabla}_X \xi + 4g(\phi X, Y)\xi.$$

Consequently,

(4.9)
$$\eta(N^{1}(X,Y)) = 4d\eta(X,Y) - 4g(X,\phi Y).$$

In particular, if X and Y are perpendicular to ξ , then

$$(4.10) \qquad [\phi, \phi](X, Y) = 4\phi(\bar{\nabla}_Y \phi)X - 2\eta([X, Y])\xi - 4g(X, \phi Y)\xi.$$

COROLLARY 4.4. In a nearly Kenmotsu manifold with quarter-symmetric non-metric connection, the Nijenhuis tensor $[\phi, \phi]$ of ϕ is given by

$$(4.11) \ [\phi,\phi](X,Y) = 4\phi(\bar{\nabla}_Y\phi)X + 2d\eta(X,Y)\xi - \eta(X)\bar{\nabla}_Y\xi + \eta(Y)\bar{\nabla}_X\xi + 4\eta(X)\eta(Y)\xi - (\eta(Y)\phi X + 3\eta(X)\phi Y) + (-\eta(Y)X + 3\eta(X)Y).$$

Consequently,

(4.12)
$$\eta(N^{1}(X,Y)) = 4d\eta(X,Y).$$

In particular, if X and Y are perpendicular to ξ , then

$$[\phi, \phi](X, Y) = 4\phi(\bar{\nabla}_Y \phi)X - 2\eta([X, Y])\xi$$
$$-(\eta(Y)X - (\eta(Y)\phi X + 3\eta(X)\phi Y).$$

5. Some basic results

Let M be a submanifold of a nearly trans-Sasakian manifold. Using (3.4) and (3.6) in (2.17), we get

(5.1)
$$\alpha(2g(X,Y)\xi + (1-\alpha)(\eta(Y)X + \eta(X)Y) - \beta(\eta(Y)PX) + \eta(Y)FX + \eta(X)PY + \eta(X)FY) - 2\eta(X)\eta(Y)\xi$$

$$= (\nabla_X P)Y + (\nabla_Y P)X - A_{FY}X - A_{FX}Y - 2th(X,Y)$$

$$-2fh(X,Y) + (\nabla_X F)Y + (\nabla_Y F)X + h(X,PY) + h(PX,Y)$$

$$+\eta(FY)PX + \eta(FX)PY + \eta(FY)FX + \eta(FX)FY$$

for any $X, Y \in TM$. Consequently, we have

PROPOSITION 5.1. Let M be a submanifold of a nearly trans-Sasakian manifold with quarter-symmetric non-metric connection. Then we have

(5.2)
$$(\nabla_X P)Y + (\nabla_Y P)X - A_{FY}X - A_{FX}Y - 2th(X,Y)$$
$$+\eta(FY)PX + \eta(FX)PY = \alpha(2g(X,Y)\xi)$$
$$+(1-\alpha)(\eta(Y)X + \eta(X)Y)$$
$$-\beta(\eta(Y)PX + \eta(X)PY) - 2\eta(X)\eta(Y)\xi$$

and

$$(5.3) \qquad (\nabla_X F)Y + (\nabla_Y F)X + h(X, PY) + h(PX, Y) - 2fh(X, Y)$$

$$+\eta(FY)FX + \eta(FX)FY = -\beta(\eta(Y)FX + \eta(X)FY)$$
$$-\eta(FY)FX - \eta(FX)FY$$

for all $X, Y \in TM$.

Now, we state the following proposition.

Proposition 5.2. Let M be a submanifold of a nearly trans-Sasakian manifold with quarter-symmetric non-metric connection. Then for all $X, Y \in TM$ we get

(5.4)
$$\bar{\nabla}_{X}\phi Y - \bar{\nabla}_{Y}\phi X - \phi[X,Y]$$

$$= 2((\nabla_{X}P)Y - A_{FY}X - th(X,Y) + \eta(FY)PX + \eta(FX)PY)$$

$$+2((\nabla_{X}F)Y + h(X,PY) - fh(X,Y) - \eta(FY)FX$$

$$-\eta(FX)FY - (1-\alpha)(\eta(Y)X + \eta(X)Y - \alpha(2g(X,Y)\xi)$$

$$+\beta(\eta(Y)PX + \eta(X)PY) + \beta(\eta(Y)FX + \eta(X)FY)$$

$$+2\eta(X)\eta(Y)\xi.$$

Consequently,

(5.5)
$$P[X,Y] = -\nabla_X PY - \nabla_Y PX + A_{FX}Y + A_{FY}X + 2P\nabla_X Y + 2th(X,Y) + 2\eta(FY)PX + 2\eta(FX)PY) + (1-\alpha)(\eta(Y)X + \eta(X)Y) + \alpha(2g(X,Y)\xi -\beta(\eta(Y)PX + \eta(X)PY) - 2\eta(X)\eta(Y)\xi,$$

(5.6)
$$F[X,Y] = -\nabla_X^{\perp} FY - \nabla_Y^{\perp} FX - h(X, PY) - h(PX,Y) + 2F\nabla_X Y + 2fh(X,Y) + 2\eta(FY)FX + 2\eta(FX)FY - \beta(\eta(Y)FX + \eta(X)FY).$$

The proof is straightforward and hence omitted.

PROPOSITION 5.3. Let M be a semi-invariant submanifold of a nearly trans-Sasakian manifold with quarter-symmetric non-metric connection. Then (P, ξ, η, g) is a nearly trans-Sasakian structure on the distribution $D^1 \oplus \{\xi\}$ if th(X,Y) = 0 for all $X,Y \in D^1 \oplus \{\xi\}$.

Proof. From $D^1 \oplus \{\xi\} = Ker(F)$ and (3.9) we have $P^2 = -I + \eta \oplus \xi$ on $D^1 \oplus \{\xi\}$. We also get $P\xi = 0$, $\eta(\xi) = 1$, $\eta \circ P = 0$. Using $D^1 \oplus \{\xi\} = Ker(F)$ and th(X,Y) = 0 in (5.2), we get

(5.7)
$$(\nabla_X P)Y + (\nabla_Y P)X = -\beta(\eta(Y)PX + \eta(X)PY) - \eta(FY)PX$$
$$-\eta(FX)PY + \alpha(2g(X,Y)\xi + (1-\alpha)(\eta(X)Y - \eta(Y)X)$$
$$-2\eta(X)\eta(Y)\xi,$$

where $X, Y \in D^1 \oplus \{\xi\}$. This completes the proof.

THEOREM 5.4. Let M be a semi-invariant submanifold of a nearly trans-Sasakian manifold with quarter-symmetric non-metric connection. Then we have the followings.

- (i) if $D^0 \oplus \{\xi\}$ is autoparallel, then
- (5.8) $A_{FX}Y + A_{FY}X + 2th(X,Y) \eta(FY)PX \eta(FX)PY = 0,$ $X, Y \in D^0 \oplus \{\xi\},$
 - (ii) if $D^1 \oplus \{\xi\}$ is autoparallel, then
- (5.9) $h(X, PY) + h(PX, Y) + \eta(FY)FX + \eta(FX)FY = 2fh(X, Y),$ $X, Y \in D^1 \oplus \{\xi\}.$

Proof. In view of (5.2) and autoparallelness of $D^0 \oplus \{\xi\}$ we get (1), while in view of (5.3) and appropriateness of $D^1 \oplus \{\xi\}$ we get (2).

In view of Proposition 5.3 and (ii) in Theorem 5.1, we get

THEOREM 5.5. Let M be a submanifold of nearly trans-Sasakian manifold with quarter-symmetric non-metric connection with $\xi \in TM$. If M is invariant, then M is nearly trans-Sasakian. Moreover,

$$h(X,PY) + h(PX,Y) - 2fh(X,Y)\eta(FY)FX + \eta(FX)FY = 0$$
 for all $X,Y \in TM$.

6. Integrability of the distribution $D^1 \oplus \{\xi\}$

We begin with a lemma.

Lemma 6.1. Let M be a semi-invariant submanifold of a nearly trans-Sasakian manifold with quarter-symmetric non-metric connection. Then

(6.1)
$$F[X,Y] = -h(X,PY) - h(PX,Y) + 2F\nabla_X Y + 2fh(X,Y) + 2\eta(FY)FX + 2\eta(FX)FY$$

or equivalently,

(6.2)
$$-h(X, PX) + F\nabla_X X + fh(X, X) + 2\eta(FX)FX = 0$$
 for all $X, Y \in D^1 \oplus \{\xi\}$.

Proof. Equation (6.1) follows from
$$D^1 \oplus \{\xi\} = Ker(F)$$
 and (5.6) equivalence of (6.1) and $D^1 \oplus \{\xi\} = Ker(F)$.

We can state the following theorem.

THEOREM 6.2. The distribution $D^1 \oplus \{\xi\}$ on semi-invariant submanifold of a nearly trans-Sasakian manifold with quarter-symmetric non-metric connection is integrable if and only if

(6.3)
$$h(X, PY) + h(PX, Y)$$
$$= 2(F\nabla_X Y + fh(X, Y)) + \eta(FY)FX + \eta(FX)FY$$
for all $X, Y \in D^1 \oplus \{\xi\}.$

DEFINITION 6.3. Let M be a Riemannian manifold with the Riemannian connection ∇ . A distribution D on M will be called *nearly autoparallel* if for all $X,Y\in D$ we have $(\nabla_X Y + \nabla_Y X)\in D$ or equivalently $\nabla_X X\in D$.

Thus, we have the following flow chart.

Parallel \Rightarrow Autoparallel \Rightarrow Nearly autoparallel,

Parallel \Rightarrow Integrable,

Autoparallel \Rightarrow Integrable,

Nearly autoparallel + Integrable \Rightarrow Autoparallel.

Theorem 6.4. Let M be a semi-invariant submanifold of a nearly trans-Sasakian manifold with quarter-symmetric non-metric connection. Then the following four statements

- (a) the distribution $D^1 \oplus \{\xi\}$ is autoparallel,
- (b) $h(X, PY) + h(PX, Y) = 2fh(X, Y) + 2\eta(FX)FY + 2\eta(FY)FX$, for all $X, Y \in D^1 \oplus \{\xi\}$,
- (c) $h(X, PX) = fh(X, X) + 4\eta(FX)FX, X \in D^1 \oplus \{\xi\},\$
- (d) the distribution $D^1 \oplus \{\xi\}$ is nearly autoparallel

are related by $(a) \Rightarrow (b) \Leftrightarrow (c) \Rightarrow (d)$. In particular, if $D^1 \oplus \{\xi\}$ is integrable, then the above four statement are equivalent.

Let
$$X, Y \in D^1 \oplus \{\xi\}$$
. Using (2.1) and (3.6) in (4.1) we get

(6.4)
$$N^{1}(X,Y) = 2d\eta(X,Y)\xi + [\phi X,\phi Y] - [X,Y] + \eta([X,Y])\xi -P([X,\phi X] + [\phi X,Y]) - F([X,\phi Y] + [\phi X,Y]).$$

On the other hand, from equation (4.5) we have

$$(\bar{\nabla}_{\phi X}\phi)Y = \phi(\bar{\nabla}_{Y}\phi)X - ((\bar{\nabla}_{Y}\eta)X)\xi - \eta(X)\bar{\nabla}_{Y}\xi + \alpha(2g(\phi X, Y)\xi) + (1-\alpha)(\eta(Y)\phi X) - \beta(\eta(Y)\phi^{2}X)$$

which implies that

(6.5)
$$(\bar{\nabla}_{\phi X}\phi)Y - (\bar{\nabla}_{\phi Y}\phi)X$$

$$= \phi((\bar{\nabla}_{Y}\phi)X - (\bar{\nabla}_{X}\phi)Y) + 2d\eta(X,Y)\xi$$

$$-\eta(X)U^{1}\nabla_{Y}\xi - \eta(X)U^{0}\nabla_{Y}\xi + \eta(Y)U^{1}\nabla_{X}\xi$$
$$+\eta(Y)U^{0}\nabla_{X}\xi - \eta(X)h(Y,\xi) + \eta(Y)h(X,\xi)$$
$$+(1-\alpha)(\eta(Y)\phi X - \eta(X)\phi Y)$$
$$-\beta(\eta(X)\phi^{2}Y - \eta(Y)\phi^{2}X).$$

Next we can easily get

(6.6)
$$\phi(\bar{\nabla}_Y \phi) X = \phi \bar{\nabla}_Y \phi X - \phi^2 \bar{\nabla}_Y X$$
$$= \phi(\nabla_Y \phi X + h(Y, \phi X)) + \bar{\nabla}_Y X - \eta(\bar{\nabla}_Y X) \xi.$$

So we know

(6.7)
$$\phi((\bar{\nabla}_Y \phi)X - (\bar{\nabla}_X \phi)Y)$$

$$= -[X, Y] + \eta([X, Y])\xi + P(\nabla_Y \phi X - \nabla_X \phi Y)$$

$$+ F(\nabla_Y \phi X - \nabla_X \phi Y) + \phi(h(Y, \phi X) - h(X, \phi Y)).$$

In view of (6.5) and (6.7), we get

(6.8)
$$N^{1}(X,Y) = -2[X,Y] + 2P(\nabla_{Y}\phi X - \nabla_{X}\phi Y) + 2F(\nabla_{Y}\phi X - \nabla_{X}\phi Y) + 2\phi(h(Y,\phi X) - h(X,\phi Y)) - \eta(X)U^{1}\nabla_{Y}\xi - \eta(X)U^{0}\nabla_{Y}\xi + \eta(Y)U^{1}\nabla_{X}\xi + \eta(Y)U^{0}\nabla_{X}\xi - \eta(X)h(Y,\xi) + \eta(Y)h(X,\xi) + 4d\eta(X,Y)\xi + (1-\alpha)(\eta(Y)\phi X - \eta(X)\phi Y) - \beta(\eta(Y)X - \eta(X)Y) + 2\eta([X,Y])\xi - \beta(2\eta(X)\eta(Y)\xi).$$

Theorem 6.5. The distribution $D^1 \oplus \{\xi\}$ is integrable on a semi-invariant submanifold M of nearly trans-Sasakian manifold with quarter-symmetric non-metric connection if and only if

(6.9)
$$N^1(X,Y) \in D^1 \oplus \{\xi\},\$$

(6.10)
$$2(h(Y,\phi X) - h(X,\phi Y)) = \eta(X)(\phi U^{0}\nabla_{Y}\xi + (1-\alpha)U^{0}Y + \beta\phi U^{0}Y + fh(Y,\xi))$$
$$-\eta(Y)(\phi U^{0}\nabla_{X}\xi + (1-\alpha)U^{0}X + \beta\phi U^{0}X + fh(X,\xi))$$
for all $X, Y \in D^{1} \oplus \{\xi\}$.

Proof. Let $X, Y \in D^1 \oplus \{\xi\}$. If $D^1 \oplus \{\xi\}$ is integrable, then (6.9) is true and we get from (6.8)

$$2F(\nabla_{Y}\phi X - \nabla_{X}\phi Y) + 2\phi(h(Y,\phi X) - h(X,\phi Y)) + \eta(Y)U^{0}\nabla_{X}\xi - \eta(X)U^{0}\nabla_{Y}\xi + \eta(Y)h(X,\xi) - \eta(X)h(Y,\xi) + (1-\alpha)(\eta(Y)FX - \eta(X)FY) - \beta(\eta(Y)X - \eta(X)Y + 2\eta(X)\eta(Y)\xi) = 0.$$

Applying ϕ to the above equation, we have

$$-2U^{0}(\nabla_{Y}\phi X - \nabla_{X}\phi Y) - 2h(Y,\phi X) - h(X,\phi Y) +\eta(Y)\phi U^{0}\nabla_{X}\xi - \eta(X)\phi U^{0}\nabla_{Y}\xi + \eta(Y)th(X,\xi) +\eta(Y)fh(X,\xi) - \eta(X)th(Y,\xi) - \eta(X)fh(Y,\xi) +(1-\alpha)(\eta(Y)U^{0}X + \eta(X)U^{0}Y) + \beta\phi(\eta(X)U^{0}Y + \eta(Y)U^{0}X) = 0.$$

Hence taking the normal part, we get (6.10).

Conversely, let (6.9) and (6.10) be true. Using (6.10) in (6.8) we get

$$-2U^{0}[X,Y] + 2F(\nabla_{Y}\phi X - \nabla_{X}\phi Y) + 2\phi h(Y,\phi X) - h(X,\phi Y) + \eta(Y)U^{0}\nabla_{X}\xi - \eta(X)U^{0}\nabla_{Y}\xi + \eta(Y)h(X,\xi) - \eta(X)h(Y,\xi) + (1-\alpha)(\eta(Y)FX - \eta(X)FY) - \beta(\eta(X)\phi^{2}Y - \eta(Y)\phi^{2}X) = 0.$$

Applying ϕ to the above equation and using (6.10), we get $\phi U^0[X,Y] = 0$, from which we get $U^0[X,Y] = 0$. Hence $D^1 \oplus \{\xi\}$ is integrable. \Box

If \overline{M} is a trans-Sasakian manifold, then it is known that $h(X,\xi)=0$ and $U^0\nabla_X\xi=0$ for all $X\in D^1\oplus\{\xi\}$. Hence in view of the previous theorem, we have the following.

COROLLARY 6.6. If M is a semi-invariant submanifold of a trans-Sasakian manifold with quarter-symmetric non-metric connection, then the distribution $D^1 \oplus \{\xi\}$ is integrable if and only if $h(X, \phi Y) = h(Y, \phi X)$ for all $X, Y \in D^1 \oplus \{\xi\}$.

7. Integrability of the distribution $D^0 \oplus \{\xi\}$

Lemma 7.1. Let M be a semi-invariant submanifold of a trans-Sasakian manifold with quarter-symmetric non-metric connection. Then

(7.1)
$$3(A_{FX}Y - A_{FY}X) = P[X, Y] - \beta(\eta(Y)PX + \eta(X)PY).$$

Proof. For
$$X, Y \in D^0 \oplus \{\xi\}$$
 and $Z \in TM$, we have
$$-A_{\phi X}Z + \nabla^{\perp}_{Z}\phi X = \bar{\nabla}_{Z}\phi X = (\bar{\nabla}_{Z}\phi)X + \phi(\bar{\nabla}_{Z}X).$$

Using equation (2.13) in above, we have

$$-A_{\phi X}Z + \nabla_Z^{\perp}\phi X = -(\bar{\nabla}_X\phi)Z + \alpha(2g(X,Z)\xi)$$
$$+(1-\alpha)\eta(X)Z - \eta(Z)X) - \beta(\eta(X)\phi Z + \eta(Z)\phi X)$$
$$-2\eta(X)\eta(Z)\xi + \phi\bar{\nabla}_Z X + \phi h(Z,X),$$

so that

$$\phi h(Z,X) = -A_{\phi X}Z + \nabla_Z^{\perp}\phi X + (\bar{\nabla}_X\phi)Z - \alpha(2g(X,Z)\xi)$$
$$+(1-\alpha)\eta(X)Z - \eta(Z)X) - \beta(\eta(Z)\phi X + \eta(X)\phi Z)$$
$$-2\eta(X)\eta(Y)\xi - \phi\bar{\nabla}_Z X$$

and hence, we have

$$g(\phi h(Z, X), Y) = -g(A_{\phi X}Z, Y) + g((\bar{\nabla}_X \phi)Z, Y)$$
$$= -g(A_{\phi X}Y, Z) - g((\bar{\nabla}_X \phi)Y, Z).$$

On the other hand, we know

$$g(\phi h(Z,X),Y) = -g(h(Z,X),\phi Y) = -g(A_{\phi Y}X,Z).$$

Thus from the above two relations, we get

(7.2)
$$g(A_{\phi Y}X, Z) = g(A_{\phi X}Y, Z) + g((\bar{\nabla}_X \phi)Y, Z).$$

For $X,Y\in D^0\oplus\{\xi\}$, we calculate $(\bar{\nabla}_X\phi)Y$ as follows. In view of

$$\bar{\nabla}_X \phi Y - \bar{\nabla}_Y \phi X = A_{\phi X} Y - A_{\phi Y} X + \nabla_X^{\perp} \phi Y - \nabla_Y^{\perp} \phi X$$

and

$$\bar{\nabla}_X \phi Y - \bar{\nabla}_Y \phi X = (\bar{\nabla}_X \phi) Y - (\bar{\nabla}_Y \phi) X + \phi [X, Y],$$

we have

$$(\bar{\nabla}_X \phi) Y - (\bar{\nabla}_Y \phi) X = A_{\phi X} Y - A_{\phi Y} X + \nabla_X^{\perp} \phi Y - \nabla_Y^{\perp} \phi X - \phi [X, Y],$$
 which in view of (2.13) gives

(7.3)
$$(\bar{\nabla}_X \phi) Y = \frac{1}{2} (A_{\phi X} Y - A_{\phi Y} X + \nabla_X^{\perp} \phi Y - \nabla_Y^{\perp} \phi X - \phi [X, Y]$$

$$+ \frac{\alpha}{2} (2g(X, Y)\xi) + \frac{(1 - \alpha)}{2} (\eta(X)Y + \eta(Y)X)$$

$$- \frac{\beta}{2} (\eta(X)\phi Y + \eta(Y)\phi X - 2\eta(X)\eta(Y)\xi).$$

Now using (7.3) in (7.2), we get (7.1).

In view of $Ker(P) = D^0 \oplus \{\xi\}$, this leads to the following.

THEOREM 7.2. Let M be semi-invariant submanifold of a nearly trans-Sasakian manifold with quarter-symmetric non-metric connection. Then the distribution $D^0 \oplus \{\xi\}$ is integrable if and only if

$$A_{FX}Y = A_{FY}X, \ X, Y \in D^0 \oplus \{\xi\}.$$

Using (2.4) in (7.2) for $X, Y \in D^0 \oplus \{\xi\}$, we get $A_{FX}Y = A_{FY}X$. Hence, in view of the above theorem, we get the following.

COROLLARY 7.3. Let M be a semi-invariant submanifold of a trans-Sasakian manifold with quarter-symmetric non-metric connection. Then the distribution $D^0 \oplus \{\xi\}$ is integrable.

8. Integrability of the distribution D^0

We calculated the torsion tensor $N^1(Y,X)$ for $X,Y\in D^0$, it can be verified that

(8.1)
$$\phi((\bar{\nabla}_X \phi)Y - (\bar{\nabla}_Y \phi)X) = \phi(A_{\phi X}Y - A_{\phi Y}X) + \phi(\nabla_X^{\perp} \phi Y - \nabla_Y^{\perp} \phi X) + [X, Y] - \eta([X, Y])\xi,$$

(8.2)
$$(\bar{\nabla}_{\phi Y}\phi)X - (\bar{\nabla}_{\phi X}\phi)Y) = [X,Y] + \phi(A_{\phi X}Y - A_{\phi Y}X)$$
$$+\phi(\nabla_X^{\perp}\phi Y - \nabla_Y^{\perp}\phi X).$$

Using (8.1), (8.2) and (7.1), we get for $X, Y \in D^0$

$$(8.3) N^{1}(Y,X) = \frac{8}{3}[X,Y] + \frac{2}{3}\phi(\nabla_{X}^{\perp}\phi Y - \nabla_{Y}^{\perp}\phi X) + \frac{8}{3}d\eta(X,Y)\xi.$$

THEOREM 8.1. The distribution D^0 is integrable on a semi-nvariant submanifold M of a nearly trans-Sasakian manifold with quarter-symmetric non-metric connection if and only if

$$(8.4) N^1(Y,X) \in D^0 \oplus \bar{D}^1,$$

$$(8.5) A_{FX}Y = A_{FY}X,$$

for all $X, Y \in D^0$.

Proof. If D^0 is integrable, then in view of (8.2) and (8.3) the relation (8.4) and (8.5) follow easily. Conversely, let $X,Y\in D^0$ and let the relation (8.4) and (8.5) be true. Then in view of (8.2) we get P[X,Y]=0 and in view of (8.3) we get

$$g(\xi,N^1(Y,X))=g(\xi,2[Y,X])=0.$$
 Thus $[X,Y]\in D^0.$ $\hfill\Box$

9. Non-integrability of the distribution D^1

THEOREM 9.1. Let M be a semi-invariant submanifold of a nearly trans-Sasakian manifold with quarter-symmetric non-metric connection with $\alpha \neq 0$. Then the non-zero invariant distribution D^1 is not integrable.

Proof. If D^1 is integrable, then it follows that $d\eta(X,Y) = 0$ and $[\phi, \phi](X,Y) \in D^1$ for $X, Y \in D^1$. Therefore, for $X \in D^1$, (4.6) gives

$$\eta([\phi, \phi](X, PX) + 2d\eta(X, PX)\xi) = 0,$$

$$\eta(N^{1}(X, PX)) = 4\alpha g(\phi X, PX) = 4\alpha g(PX, PX),$$

which is a contradiction.

References

- [1] M. Ahmad, Semi-invariant submanifolds of nearly Kenmotsu manifold with the canonical semi-symmetric semi-metric connection, Mathematicki Vesnik 62 (2010), 189-198.
- [2] M. Ahmad, J. B. Jun, and A. Haseeb, Hypersurfaces of almost r-paracontact Riemannian manifold endowed with quarter-symmetric metric connection, Bull. Korean Math. Soc. 46 (2009), no. 3, 477-487.
- [3] M. Ahmad, C. Ozgur, and A. Haseeb, Hypersurfaces of almost r-paracontact Riemannian manifold endowed with quarter-symmetric non-metric connection, Kyungpook Math. J. 49 (2009), 533-543.
- [4] M. Ahmad, S. Rahman, and M. D. Siddiqi, Semi-invariant submanifolds of a nearly Sasakian manifold endowed with a semi-symmetric metric connection, Bull. Allahabad Math. Soc. 25, part 1(2010), 23-33.
- [5] A. Bejancu, On semi-invariant submanifold of an almost contact metric manifold, A. Stiint. Univ. "AL .I. Cuza" Iasi Mat. 27(supplement)(1981), 17-21.
- [6] A. Bejancu, Geometry of CR-submanifolds, D. Reidel publishing company, Holland, 1986.
- [7] D. E. Blair, Contact manifold in Riemannian geometry, Lecture Notes in Math. 509, Springer Verlag 1976.
- [8] L. S. Das and M. Ahmad, CR-Submanifolds of LP-Sasakian manifold with quarter-symmetric non-metric connection, Math. Sci. Res. J. 13(7)(2009), 161-169.
- [9] L. S. Das, R. Nivas, S. Ali, and M. Ahmad, Study of submanifolds immersed in a manifold with quarter-symmetric semi-metric connection, Tensor N. S. 65 (2004), 250-260.
- [10] C. Gherghe, Harmonicity on nearly trans-Sasaki manifolds, Demostratio. Math. 33 (2000), 151-157.
- [11] S. Golab, On semi-symmetric and quarter-symmetric linear connections. Tensor N. S. 29 (1975), 249-254.
- [12] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), 1-27.

- [13] M. Kobayashi, Semi-invariant submanifold of a certain class of almost contact manifolds, Tensor 43 (1986), 28-36.
- [14] J. C. Marrero, *The local structure of trans-Sasakian manifolds*, Ann. Mat. Pura Appl. (4), 162(1992), 77-86.
- [15] R. Nivas and G. Verma, On quarter-symmetric non-metric connection in a Riemannian manifold, J. Rajasthan Acad. Sci. 4 (2005), no. 1, 57-68.
- [16] J. A. Oubina, New Class of almost contact metric structures, Publ. Math. Debrecen **32** (1985), 187-193.
- [17] S. N. Pandey, and R. S. Mishra, On quarter-symmetric metric F-connections, Tensor 34 (1980), 1-7.
- [18] M. H. Shahid, CR-Submanifolds of trans-Sasakian manifold, Indian J. Pure Appl. Math. 22 (1991), 1007-1012.

*

Department of Mathematics Integral University Kursi road, Lucknow, 226026, India E-mail: mobinahmad@rediffmail.com

**

Department of Mathematics Kookmin University Seoul 136-702, Republic of Korea *E-mail*: jbjun@kookmin.ac.kr

Department of Mathematics Integral University Kursi-Road, Lucknow-226026, India E-mail: anallali@yahoo.com