JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 8, June 1995

ON NEARNESS SPACE

SEUNG ON LEE AND EUN Al CHOI

ABSTRACT. In 1974 H.Herrlich invented nearness spaces, a very fruit-
ful concept which enables one to unify topological aspects. In this pa-
per, we introduce the Lindel6f nearness structure, countably bounded
nearness structure and countably totally bounded nearness structure.
And we show that (X, £.) is concrete and complete if and only if
&L = & in a symmetric topological space (X, t). Also we show that

the following are equivalent in a symmetric topological space (X, t):

(1) (X, &L) is countably totally bounded.
(2) (X, &) is countably totally bounded.
(3) (X, t) is countably compact.

1. Introduction
NOTATION 1.1. Let X be a set. For A,B C P(X) and 4,B C X

the following notation is used:

(1) AvB={AUB: A€ A,BceB)}.

(2) A corefines B means that for each A € A there exists B € B
such that B C A, and denoted by A < B.

(3) A refines B means that for each A € A there exists B € B
such that A C B, and denoted by A < B. |

DEFINITION 1.2. Let X be a set and ¢ C P%(X) where P?(X) is
the power set of the power set of X. Then ¢ is said to be a nearness

structure on X if it satisfies the following :
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20 SEUNG ON LEE AND EUN AI CHOI

(N1) A< B € ¢ implies A € €.

(N2) NA # 0 implies A € €.

(N3) 0 # € # PHX).

(Ny ) EAVBeE, then A€ or Bek.

(N5) CleA = {CleA: A € A} € € implies A € £, where Cl¢A =
{r e X : {{z}, A} € £}.

In this case, the pair (X, €) is called a nearness space or shortly
an N-space, and A is said to be nearif A € €.

€ is called a quasi-nearness structure or shortly a QQ-nearness struc-
ture on X if ¢ satisfies (N7), (N2), (N3) and (Ny).

Given a nearness space (X, £), the operator C'l¢ is a closure opera-
tor on X. Hence there exists a topology associated with each nearness
space in a natural way. This topology is denoted by t(£) or t¢. This
topology is symmetric, i.e., if € m then y € —{—x_}_

DEFINITION 1.3. A nearness structure ¢ is compatible with a topol-
ogy t on a set X if t = t¢, where t¢ is a topology generated by £.

Conversely, given any symmetric topological space (X, t) there

exists a compatible nearness structure £; given by
€= {ACPX):nA#0},

where A= {A: A € A}.
DEFINITION 1.4. Let (X, ) be a nearness space.
(1) (X, &) is topological if A € ¢ implies NA # 0.
(2) A non-empty subset A of P(X) is a {-clusterif A is a maximal
element of the set £, ordered by inclusion.
(3) (X, £)is concrete if each near collection is contained in some

§-cluster.
(4) (X, £)is complete if NA # @ for each maximal element A in

£.
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(5) (X, &) is contigual if A ¢ £ implies that there exists finite
B C A such that B ¢ £.

(6) (X, &) is totally bounded if A ¢ € implies that there exists
finite B C A such that NB = .

(7) For A C P(X), A has the f.i.p. if for any finite subfamily B
of A, NB # §.

DEFINITION 1.5. Let (X, t) be a symmetric topological space and
€, = {A C P(X) : Ahas the fi.p.}.

Then (X, &) is called the Pervin nearness space on (X, t).
PROPOSITION 1.6. Every contigual nearness space is concrete.
PROOF. See reference [6].

PROPOSITION 1.7. Let (X, t) be a Ty topological space. Then &,

is a compatible contigual nearness structure on X.
PROOF. See reference [3].

2. The Lindelof Nearness Space

For A C P(X), A has the c.i.p. if for any countable subfamily B
of A, NB # 0.

DEFINITION 2.1. Let (X, t) be a symmetric topological space and
€L = {ACP(X): A has the c.i.p.}.

Then £, is called the Lindeléf nearness structure on (X, t), and
(X, €1) the Lindelof nearness space on (X, t).
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THEOREM 2.2. Let (X, t) be a symmetric topological space. Then
(X, &p) is concrete and complete if and only if §, = ;.

PROOF. Suppose that (X, &) is concrete and complete. It is ob-
vious that & C €. To show &, C &, take any A € {,. Then A is
contained in some £, -cluster B and NB # 0 ; and hence NA # §. Thus
¢, C & implies £, = &. Conversely, suppose £, = & then (X, &)
is contigual. Hence (X, £,) is concrete by Proposition 1.6.. And for
any A € €,-cluster, A € &, and hence NA # (. Hence (X, £,) is

complete.

PROPOSITION 2.3. Let (X, t) be a symmetric topological space.

Then £}, is a compatible nearness structure on (X, t).
PROOF. See reference [3].

THEOREM 2.4. Let (X, t) be a symmetric topological space. Then
(X, €1) is concrete and complete if and only if £1, = ;.

PROOF. Suppose £ = &;. To show (X, £1) is concrete, take any
A € €, then NA # §. Pick z € NA. Let £1(z) = {B C X :
z € Cle, B}, thenNér(z) # 0 implies £1(z) € €. To show &p(a) is
maximal, assume that £(z) C D € {;, and take any D € D. Since
z € {a} = Cle, {2}, {2} € €L(z) C D € £1. Then {{z},D} € &
implies ¢ € Clg, D. Thus D € {(z) and hence D C {r(z). Hence
£r(z) is €p-cluster. Assume that A € A but A ¢ {(z), then = ¢
Cle, A. But for each A € A, 2 € A= Clg, A. This is a contradiction.
Hence A C £1(z). Thus (X, £1) is concrete. Next, we will show that
(X, £r) is complete. Let A € {r-cluster, then A € {1 = £, and hence
NA # 0. Thus (X, £1) is complete. Conversely, if (X, 1) is concrete
and complete, then & C &. To show &, C &, let A € {r. Then
there is a £p-cluster B with A C B since (X, £) is concrete. Because
(X, €r) is complete, NB # 0 ; hence NA # 0. Thus A € &.
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COROLLARY 2.5. Let (X, t) be a symmetric topological space.

If (X, &) is concrete and complete, then (X, €L) is concrete and
complete. ‘

NOTATION 2.6. Let (X, ¢) be a nearness space.

(1) up={ACPX): {X-A:Ac A} ¢ ¢}
(2) pr={BCPX):{X-B:BeB}¢¢}.
(B) m={CCPX):{X-C:CeC}¢¢).

In this paper, a compact space need not be Hausdorff.

COROLLARY 2.7. Let (X, t) be a symmetric topological space.
Then :

(1) & CéL C&y and pp C pr C py.

(2) pp = pr if and only if (X, t) is countably compact.
(3) pur = p¢ if and only if (X, t) is Lindelsf.
(4) pp = pr = py if and only if (X, t) is compact.

PROOF. See reference [3].

‘COROLLARY 2.8. Let (X, t) be a symmetric topological space.
Then :

(1) (X, &) is concrete and complete if and only if (X, t) is
Lindel6f.

(2) (X, &) is concrete and complete if and only if (X, t) is com-
pact.

Definition 2.9. Let (X, £) be a Q-nearness space. Then:

(1) (X, &)is countably contigual if A ¢ ¢ implies that there exists
a countable B C A such that B ¢ €.

(2) (X, €)is countably bounded if A ¢ € implies that there exists
a countable B C A such that NB = .
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(3) (X, &) is countably totally bounded if every countable A C

P(X) with the finite intersection property is near.

PROPOSITION 2.10. Let (X, t) be a symmetric topological space.
Then :

(1) (X, €L) is countably contigual.
(2) (X, €L) is countably bounded.

PROOF. See reference [3].

THEOREM 2.11. Let (X, t) be a symmetric topological space.
Then:
(1) If (X, €r) is contigual then (X, t) is countably compact.
(2) If (X, &) is countably bounded then (X, t) is Lindeldt.

PROOF. (1) Suppose (X, 1) is contigual and take any countable
open cover G = {Go :a € A} of X. Then {X —Gqo:a € A} ¢ £, and
since (X, £L) is contigual there exists a finite B = {X — Gq, : G4, €
G, 1 =1,2,.,n} such that B ¢ £;. Hence G has a finite subcover
{Gs; :1=1,2,..,n} for X.

(2) Take any open cover G = { Go : a« € A} of X. Then {X — G, :
a € A} ¢ &, and since (X, &) is countably bounded there exists
a countable D = {X — G4, : ¢ € I,1is a countable set} C {X —
Ga : @ € A} such that ND = (. Hence G has a countable subcover
D* = {Gq, : 1t € 1, 1 is a countable set} for X.

THEOREM 2.12. Let (X, t) be a symmetric topological space.

Then the following are equivalent :
(1) (X, €L) is countably totally bounded.

(2) (X, &) is countably totally bounded.
(3) (X, t) is countably compact.
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PROOF. (2)==(3). Suppose (X, &) is countably totally bounded.
Take any countable open cover G = {G4 : @ € A} of X. Since
EE={ACPX):NA#0}, {X —Gqo:aeA}¢E and hence there
exists a finite B C {X — G4 : a € A} such that NB = §. Hence (X, t)
is countably compact.

(3)==(2). Suppose (X, t) is countably compact. Let A ¢ &; and A
a countable subfamily of P(X). Then NA = 0 ; and hence U{X — 4 :
A € A} = X. Thus there exists a finite B C {X — A : A € A} with
UB = X. Hence (X, ) is countably totally bounded.

(1)==(3). Suppose (X, &) is countably totally bounded. Take
any countable open cover G = {G4 : @ € A} of X. Since L = {A C
P(X) : A has the cip.}, {X —Ga : @ € A} ¢ £, and hence there
exists a finite B C {X — G4 : @ € A} such that NB = (). Hence (X, t)
is countably compact. :

(3)==(1). Suppose (X, t) is countably compact. Let A ¢ {1, and
A a countable subfamily of P(X). Then NA = (); and U{X — 4 :
A € A} = X. Thus there exists a finite B C {X — A : A € A} with
UB = X. Hence (X, £1) is countably totally bounded.

DEFINITION 2.13. Let (X, €) be a nearness space and k a regular

infinite cardinal.

Then :

(1) (X, €)is k-contigualif A ¢ £ implies that there exists B C A
with | B |< k such that B ¢ ¢.

(2) (X, &) is k-bounded if A ¢ £ implies that there exists B C A
with | B |< k such that NB = {).

(3) For A C P(X), A has the k.i.p. if for any B C A with
| B|<k,NB #0.

For a symmetric topological space (X, t), let

& = {A CP(X): A has the k.i.p.},
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where k is a regular infinite cardinal.

PROPOSITION 2.14. Let (X, t) be a symmetric topological space
and k a regular infinite cardinal. Then € is a compatible k-contigual

nearness structure on X.

PROOF. First, we will show that £x is a compatible nearness struc-
ture on X. For each A C X, z € Cl¢, A if and only if {{z}, A} € &k.
Thus {x} N A # 0. Let y € {c} N4, then z € {y} C 4 ; and
hence Clg, A C A. Conversely, let z € A. Then {z} N 4 # 0 implies
{{z}, A} € & ;and hence z € Clg,A. Thus A C Clg, A. Next, to
show that (X, &) is k-contigual, let A ¢ . Then there exists B C A
such that | B |< k and NB = 0, and then B ¢ & ; and hence (X, &)

is k-contigual. Lastly, it is obvious that (X, £x) is a nearness space.

THEOREM 2.15. Let (X, t) be a symmetric topological space.
Then (X, &) is concrete and complete if and only if & = &;.

PROOF. Suppose € = &. To show (X, &) is concréte, take any
A € &, then NA #£ 0. Pickz € NA. Let &(z) ={BC X :z €
Cle,B}. Assume that {x(z) C D € & and take any D € D. Since
z € {z} = Cle, {z}, {z} € &(2) C D € &. Then {{z},D} € & and
hence ¢ € Clg, D. Thus D € {i(x) implies D C k(). Hence €x(z)
is €x-cluster. Assume that A € A but A ¢ £x(z), then = ¢ Clg, A.
But for each A € A,z € A = Clg A. This is a contradiction. Hence
A C €k(z). Thus (X, &) is concrete. Next, we will show that (X, &)
is complete. Let A € &x-cluster, then A € £ = &, and then NA # 0.
Thus (X, &) is complete. Conversely, it is obvious that & = €.

REMARK. In a @-nearness space, every countably contigual near-
ness space must be countably bounded. But every countably bounded

nearness space need not be countably contigual.
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EXAMPLE 2.16. Let X = R x {0,1} and let
D={Rx {0}}U{Rx {1}}U{{r} x {0,1} : r € R}.

Define
p={ACPX): D<A}

Then (X, p) is a Q-nearness space and is countably bounded, but
not countably contigual. For if 4 = D then there exist no countable
subset B of A such that B € p ; and hence (X, u) is not countably

contigual.
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