ON NEARNESS SPACE

SEUNG ON LEE AND EUN AI CHOI

ABSTRACT. In 1974 H. Herrlich invented nearness spaces, a very fruitful concept which enables one to unify topological aspects. In this paper, we introduce the Lindelöf nearness structure, countably bounded nearness structure and countably totally bounded nearness structure. And we show that (X, ξ_L) is concrete and complete if and only if $\xi_L = \xi_t$ in a symmetric topological space (X, t). Also we show that the following are equivalent in a symmetric topological space (X, t):

1. Introduction

NOTATION 1.1. Let X be a set. For $A, B \subseteq P(X)$ and $A, B \subseteq X$ the following notation is used:

1. $A \vee B = \{A \cup B : A \in A, B \in B\}$.
2. A corefines B means that for each $A \in A$ there exists $B \in B$ such that $B \subseteq A$, and denoted by $A < B$.
3. A refines B means that for each $A \in A$ there exists $B \in B$ such that $A \subseteq B$, and denoted by $A \prec B$.

DEFINITION 1.2. Let X be a set and $\xi \subseteq P^2(X)$ where $P^2(X)$ is the power set of the power set of X. Then ξ is said to be a nearness structure on X if it satisfies the following:

Received by the editors on June 30, 1995.
\((N_1) \ A < B \in \xi \) implies \(A \in \xi \).

\((N_2) \ \cap A \neq \emptyset \) implies \(A \in \xi \).

\((N_3) \ \emptyset \neq \xi \neq \mathcal{P}^2(X) \).

\((N_4) \) If \(A \cup B \in \xi \), then \(A \in \xi \) or \(B \in \xi \).

\((N_5) \ Cl_\xi A = \{ Cl_\xi A : A \in A \} \in \xi \) implies \(A \in \xi \), where \(Cl_\xi A = \{ x \in X : \{ \{ x \}, A \} \in \xi \} \).

In this case, the pair \((X, \xi) \) is called a nearness space or shortly an \(N \)-space, and \(A \) is said to be near if \(A \in \xi \).

\(\xi \) is called a quasi-nearness structure or shortly a \(Q \)-nearness structure on \(X \) if \(\xi \) satisfies \((N_1), (N_2), (N_3) \) and \((N_4) \).

Given a nearness space \((X, \xi) \), the operator \(Cl_\xi \) is a closure operator on \(X \). Hence there exists a topology associated with each nearness space in a natural way. This topology is denoted by \(t(\xi) \) or \(t_\xi \). This topology is symmetric, i.e., if \(x \in \overline{y} \) then \(y \in \overline{x} \).

Definition 1.3. A nearness structure \(\xi \) is compatible with a topology \(t \) on a set \(X \) if \(t = t_\xi \), where \(t_\xi \) is a topology generated by \(\xi \).

Conversely, given any symmetric topological space \((X, t) \) there exists a compatible nearness structure \(\xi_t \) given by

\[
\xi_t = \{ A \subset \mathcal{P}(X) : \cap \overline{A} \neq \emptyset \},
\]

where \(\overline{A} = \{ \overline{A} : A \in A \} \).

Definition 1.4. Let \((X, \xi) \) be a nearness space.

1. \((X, \xi) \) is topological if \(A \in \xi \) implies \(\cap \overline{A} \neq \emptyset \).
2. A non-empty subset \(A \) of \(\mathcal{P}(X) \) is a \(\xi \)-cluster if \(A \) is a maximal element of the set \(\xi \), ordered by inclusion.
3. \((X, \xi) \) is concrete if each near collection is contained in some \(\xi \)-cluster.
4. \((X, \xi) \) is complete if \(\cap \overline{A} \neq \emptyset \) for each maximal element \(A \) in \(\xi \).
(5) \((X, \xi)\) is contiguous if \(A \not\in \xi\) implies that there exists finite \(B \subset A\) such that \(B \not\in \xi\).

(6) \((X, \xi)\) is totally bounded if \(A \not\in \xi\) implies that there exists finite \(B \subset A\) such that \(\cap B = \emptyset\).

(7) For \(A \subset \mathcal{P}(X)\), \(\overline{A}\) has the f.i.p. if for any finite subfamily \(B\) of \(A\), \(\cap B \neq \emptyset\).

Definition 1.5. Let \((X, t)\) be a symmetric topological space and

\[
\xi_p = \{A \subset \mathcal{P}(X) : \overline{A}\) has the f.i.p.\}.
\]

Then \((X, \xi_p)\) is called the *Pervin nearness space* on \((X, t)\).

Proposition 1.6. Every contiguous nearness space is concrete.

Proof. See reference [6].

Proposition 1.7. Let \((X, t)\) be a \(T_1\) topological space. Then \(\xi_p\) is a compatible contiguous nearness structure on \(X\).

Proof. See reference [3].

2. The Lindelöf Nearness Space

For \(A \subset \mathcal{P}(X)\), \(\overline{A}\) has the c.i.p. if for any countable subfamily \(B\) of \(A\), \(\cap B \neq \emptyset\).

Definition 2.1. Let \((X, t)\) be a symmetric topological space and

\[
\xi_L = \{A \subset \mathcal{P}(X) : \overline{A}\) has the c.i.p.\}.
\]

Then \(\xi_L\) is called the *Lindelöf nearness structure* on \((X, t)\), and \((X, \xi_L)\) the *Lindelöf nearness space* on \((X, t)\).
THEOREM 2.2. Let \((X, t)\) be a symmetric topological space. Then \((X, \xi_p)\) is concrete and complete if and only if \(\xi_p = \xi_t\).

PROOF. Suppose that \((X, \xi_p)\) is concrete and complete. It is obvious that \(\xi_t \subset \xi_p\). To show \(\xi_p \subset \xi_t\), take any \(A \in \xi_p\). Then \(A\) is contained in some \(\xi_p\)-cluster \(B\) and \(\cap B \neq \emptyset\); and hence \(\cap A \neq \emptyset\). Thus \(\xi_p \subset \xi_t\) implies \(\xi_p = \xi_t\). Conversely, suppose \(\xi_p = \xi_t\) then \((X, \xi_p)\) is contiguual. Hence \((X, \xi_p)\) is concrete by Proposition 1.6. And for any \(A \in \xi_p\)-cluster, \(A \in \xi_t\), and hence \(\cap A \neq \emptyset\). Hence \((X, \xi_p)\) is complete.

PROPOSITION 2.3. Let \((X, t)\) be a symmetric topological space. Then \(\xi_L\) is a compatible nearness structure on \((X, t)\).

PROOF. See reference [3].

THEOREM 2.4. Let \((X, t)\) be a symmetric topological space. Then \((X, \xi_L)\) is concrete and complete if and only if \(\xi_L = \xi_t\).

PROOF. Suppose \(\xi_L = \xi_t\). To show \((X, \xi_L)\) is concrete, take any \(A \in \xi_L\), then \(\cap \overline{A} \neq \emptyset\). Pick \(x \in \cap \overline{A}\). Let \(\xi_L(x) = \{B \subset X : x \in Cl_{\xi_L} B\}\), then \(\cap \overline{\xi_L(x)} \neq \emptyset\) implies \(\xi_L(x) \in \xi_L\). To show \(\xi_L(x)\) is maximal, assume that \(\xi_L(x) \subset D \in \xi_L\) and take any \(D \in D\). Since \(x \in \{x\} = Cl_{\xi_L} \{x\}\), \(\{x\} \in \xi_L(x) \subset D \in \xi_L\). Then \(\{x\}, \{x\} \in \xi_L\) implies \(x \in Cl_{\xi_L} D\). Thus \(D \in \xi_L(x)\) and hence \(D \subset \xi_L(x)\). Hence \(\xi_L(x)\) is \(\xi_L\)-cluster. Assume that \(A \in A\) but \(A \not\in \xi_L(x)\), then \(\not\in Cl_{\xi_L} A\). But for each \(A \in A\), \(x \in \overline{A} = Cl_{\xi_L} A\). This is a contradiction. Hence \(A \subset \xi_L(x)\). Thus \((X, \xi_L)\) is concrete. Next, we will show that \((X, \xi_L)\) is complete. Let \(A \in \xi_L\)-cluster, then \(A \in \xi_L = \xi_t\), and hence \(\cap \overline{A} \neq \emptyset\). Thus \((X, \xi_L)\) is complete. Conversely, if \((X, \xi_L)\) is concrete and complete, then \(\xi_t \subset \xi_L\). To show \(\xi_L \subset \xi_t\), let \(A \in \xi_L\). Then there is a \(\xi_L\)-cluster \(B\) with \(A \subset B\) since \((X, \xi_L)\) is concrete. Because \((X, \xi_L)\) is complete, \(\cap \overline{B} \neq \emptyset\); hence \(\cap \overline{A} \neq \emptyset\). Thus \(A \in \xi_t\).
COROLLARY 2.5. Let \((X, t)\) be a symmetric topological space. If \((X, \xi_p)\) is concrete and complete, then \((X, \xi_L)\) is concrete and complete.

NOTATION 2.6. Let \((X, \xi)\) be a nearness space.

(1) \(\mu_p = \{A \subseteq \mathcal{P}(X) : \{X - A : A \in A\} \notin \xi_p\}\).
(2) \(\mu_L = \{B \subseteq \mathcal{P}(X) : \{X - B : B \in B\} \notin \xi_L\}\).
(3) \(\mu_t = \{C \subseteq \mathcal{P}(X) : \{X - C : C \in C\} \notin \xi_t\}\).

In this paper, a compact space need not be Hausdorff.

COROLLARY 2.7. Let \((X, t)\) be a symmetric topological space. Then:

(1) \(\xi_t \subseteq \xi_L \subseteq \xi_p\) and \(\mu_p \subseteq \mu_L \subseteq \mu_t\).
(2) \(\mu_p = \mu_L\) if and only if \((X, t)\) is countably compact.
(3) \(\mu_L = \mu_t\) if and only if \((X, t)\) is Lindelöf.
(4) \(\mu_p = \mu_L = \mu_t\) if and only if \((X, t)\) is compact.

PROOF. See reference [3].

COROLLARY 2.8. Let \((X, t)\) be a symmetric topological space. Then:

(1) \((X, \xi_L)\) is concrete and complete if and only if \((X, t)\) is Lindelöf.
(2) \((X, \xi_p)\) is concrete and complete if and only if \((X, t)\) is compact.

Definition 2.9. Let \((X, \xi)\) be a \(Q\)-nearness space. Then:

(1) \((X, \xi)\) is countably contiguity if \(A \notin \xi\) implies that there exists a countable \(B \subseteq A\) such that \(B \notin \xi\).
(2) \((X, \xi)\) is countably bounded if \(A \notin \xi\) implies that there exists a countable \(B \subseteq A\) such that \(\cap B = \emptyset\).
(3) (X, ξ) is countably totally bounded if every countable $A \subset \mathcal{P}(X)$ with the finite intersection property is near.

Proposition 2.10. Let (X, t) be a symmetric topological space. Then:

(1) (X, ξ_L) is countably contigual.

(2) (X, ξ_L) is countably bounded.

Proof. See reference [3].

Theorem 2.11. Let (X, t) be a symmetric topological space. Then:

(1) If (X, ξ_L) is contigual then (X, t) is countably compact.

(2) If (X, ξ_t) is countably bounded then (X, t) is Lindelöf.

Proof. (1) Suppose (X, ξ_L) is contigual and take any countable open cover $\mathcal{G} = \{G_\alpha : \alpha \in \Lambda\}$ of X. Then $\{X - G_\alpha : \alpha \in \Lambda\} \notin \xi_L$, and since (X, ξ_L) is contigual there exists a finite $\mathcal{B} = \{X - G_{\alpha_i} : \alpha_i \in \mathcal{G}, \ i = 1, 2, \ldots, n\}$ such that $\mathcal{B} \notin \xi_L$. Hence \mathcal{G} has a finite subcover $\{G_{\alpha_i} : i = 1, 2, \ldots, n\}$ for X.

(2) Take any open cover $\mathcal{G} = \{G_\alpha : \alpha \in \Lambda\}$ of X. Then $\{X - G_\alpha : \alpha \in \Lambda\} \notin \xi_t$, and since (X, ξ_t) is countably bounded there exists a countable $\mathcal{D} = \{X - G_{\alpha_i} : i \in I, I$ is a countable set$\} \subset \{X - G_\alpha : \alpha \in \Lambda\}$ such that $\cap \mathcal{D} = \emptyset$. Hence \mathcal{G} has a countable subcover $\mathcal{D}^* = \{G_{\alpha_i} : i \in I, I$ is a countable set$\}$ for X.

Theorem 2.12. Let (X, t) be a symmetric topological space. Then the following are equivalent:

(1) (X, ξ_L) is countably totally bounded.

(2) (X, ξ_t) is countably totally bounded.

(3) (X, t) is countably compact.
ON NEARNESS SPACE

Proof. (2)⇒(3). Suppose \((X, \xi_t)\) is countably totally bounded.
Take any countable open cover \(G = \{G_\alpha : \alpha \in \Lambda\}\) of \(X\). Since
\(\xi_t = \{A \subseteq \mathcal{P}(X) : \overline{\mathcal{A}} \neq \emptyset\}\), \(\{X - G_\alpha : \alpha \in \Lambda\} \notin \xi_t\) and hence there
exists a finite \(B \subseteq \{X - G_\alpha : \alpha \in \Lambda\}\) such that \(\cap B = \emptyset\). Hence \((X, t)\)
is countably compact.

(3)⇒(2). Suppose \((X, t)\) is countably compact. Let \(A \notin \xi_t\) and \(A\) a countable subfamily of \(\mathcal{P}(X)\). Then \(\cap \overline{\mathcal{A}} = \emptyset\); and hence \(\cup \{X - \overline{A} : A \in \mathcal{A}\} = X\). Thus there exists a finite \(B \subseteq \{X - \overline{A} : A \in \mathcal{A}\}\) with
\(\cup B = X\). Hence \((X, \xi_t)\) is countably totally bounded.

(1)⇒(3). Suppose \((X, \xi_L)\) is countably totally bounded. Take
any countable open cover \(G = \{G_\alpha : \alpha \in \Lambda\}\) of \(X\). Since \(\xi_L = \{A \subseteq \mathcal{P}(X) : \overline{\mathcal{A}}\ has the c.i.p.\}, \(\{X - G_\alpha : \alpha \in \Lambda\} \notin \xi_L\) and hence there
exists a finite \(B \subseteq \{X - G_\alpha : \alpha \in \Lambda\}\) such that \(\cap B = \emptyset\). Hence \((X, t)\)
is countably compact.

(3)⇒(1). Suppose \((X, t)\) is countably compact. Let \(A \notin \xi_L\) and \(A\) a countable subfamily of \(\mathcal{P}(X)\). Then \(\cap \overline{\mathcal{A}} = \emptyset\); and \(\cup \{X - \overline{A} : A \in \mathcal{A}\} = X\). Thus there exists a finite \(B \subseteq \{X - \overline{A} : A \in \mathcal{A}\}\) with
\(\cup B = X\). Hence \((X, \xi_L)\) is countably totally bounded.

Definition 2.13. Let \((X, \xi)\) be a nearness space and \(k\) a regular
infinite cardinal.

Then:

(1) \((X, \xi)\) is \(k\)-contiguous if \(A \notin \xi\) implies that there exists \(B \subseteq A\)
with \(|B| \leq k\ such that \(B \notin \xi\).
(2) \((X, \xi)\) is \(k\)-bounded if \(A \notin \xi\) implies that there exists \(B \subseteq A\)
with \(|B| \leq k\ such that \(\cap B = \emptyset\).
(3) For \(A \subseteq \mathcal{P}(X)\), \(\overline{\mathcal{A}}\) has the k.i.p. if for any \(B \subseteq A\) with
\(|B| \leq k\), \(\cap B \neq \emptyset\).

For a symmetric topological space \((X, t)\), let

\[\xi_k = \{A \subseteq \mathcal{P}(X) : \overline{\mathcal{A}}\ has the k.i.p.\},\]
where \(k \) is a regular infinite cardinal.

Proposition 2.14. Let \((X, \tau)\) be a symmetric topological space and \(k \) a regular infinite cardinal. Then \(\xi_k \) is a compatible \(k \)-contiguity nearness structure on \(X \).

Proof. First, we will show that \(\xi_k \) is a compatible nearness structure on \(X \). For each \(A \subseteq X \), \(x \in Cl_{\xi_k} A \) if and only if \(\{ \{x\}, A \} \in \xi_k \). Thus \(\{x\} \cap \overline{A} \neq \emptyset \). Let \(y \in \{x\} \cap \overline{A} \), then \(x \in \{y\} \subseteq \overline{A} \); and hence \(Cl_{\xi_k} A \subseteq \overline{A} \). Conversely, let \(x \in \overline{A} \). Then \(\{x\} \cap \overline{A} \neq \emptyset \) implies \(\{x\}, A \} \in \xi_k \); and hence \(x \in Cl_{\xi_k} A \). Thus \(\overline{A} \subseteq Cl_{\xi_k} A \).

Next, to show that \((X, \xi_k)\) is \(k \)-contiguous, let \(A \notin \xi_k \). Then there exists \(B \subseteq A \) such that \(|B| \leq k \) and \(\cap \overline{B} = \emptyset \), and then \(B \notin \xi_k \); and hence \((X, \xi_k)\) is \(k \)-contiguous. Lastly, it is obvious that \((X, \xi_k)\) is a nearness space.

Theorem 2.15. Let \((X, \tau)\) be a symmetric topological space. Then \((X, \xi_k)\) is concrete and complete if and only if \(\xi_k = \xi_t \).

Proof. Suppose \(\xi_k = \xi_t \). To show \((X, \xi_k)\) is concrete, take any \(A \in \xi_k \), then \(\cap \overline{A} \neq \emptyset \). Pick \(x \in \cap \overline{A} \). Let \(\xi_k(x) = \{ B \subseteq X : x \in Cl_{\xi_k} B \} \). Assume that \(\xi_k(x) \subseteq D \subseteq \xi_k \) and take any \(D \in D \). Since \(x \in \{x\} = Cl_{\xi_k} \{x\} \), \(\{x\} \in \xi_k(x) \subseteq D \subseteq \xi_k \). Then \(\{x\}, D \} \in \xi_k \) and hence \(x \in Cl_{\xi_k} D \). Thus \(D \in \xi_k(x) \) implies \(D \subseteq \xi_k(x) \). Hence \(\xi_k(x) \) is \(\xi_k \)-cluster. Assume that \(A \in A \) but \(A \notin \xi_k(x) \), then \(x \notin Cl_{\xi_k} A \).

But for each \(A \in A \), \(x \in \overline{A} = Cl_{\xi_k} A \). This is a contradiction. Hence \(A \subseteq \xi_k(x) \). Thus \((X, \xi_k)\) is concrete. Next, we will show that \((X, \xi_k)\) is complete. Let \(A \in \xi_k \)-cluster, then \(A \in \xi_k = \xi_t \), and then \(\cap \overline{A} \neq \emptyset \). Thus \((X, \xi_k)\) is complete. Conversely, it is obvious that \(\xi_t = \xi_k \).

Remark. In a \(Q \)-nearness space, every countably contiguous nearness space must be countably bounded. But every countably bounded nearness space need not be countably contiguity.
Example 2.16. Let $X = \mathbb{R} \times \{0, 1\}$ and let

$$
\mathcal{D} = \{R \times \{0\}\} \cup \{R \times \{1\}\} \cup \{\{r\} \times \{0, 1\} : r \in \mathbb{R}\}.
$$

Define

$$
\mu = \{\mathcal{A} \subset \mathcal{P}(X) : \mathcal{D} \prec \mathcal{A}\}.
$$

Then (X, μ) is a Q-nearness space and is countably bounded, but not countably contigual. For if $\mathcal{A} = \mathcal{D}$ then there exist no countable subset \mathcal{B} of \mathcal{A} such that $\mathcal{B} \in \mu$; and hence (X, μ) is not countably contigual.

References